1. Cover
  2. Template
  3. 1. DBMS Workload Modeling & Machine Provisioning
    1. 1.1. ICAC'11 - Modeling Workloads using Gaussian Process
    2. 1.2. SIGMOD'18 - P-Store
  4. 2. DBMS Data Partitioning
  5. 3. DBMS Query Processing
  6. 4. DBMS Scalability
    1. 4.1. VLDB'19 - Star
    2. 4.2. TKDE'20 - Hihooi
  7. 5. Deterministic DBMS
    1. 5.1. VLDB'14 - Advantages and Disadvantages of Deterministic DBMS
    2. 5.2. VLDB'20 - Aria
    3. 5.3. SIGMOD'22 - Snapper
  8. 6. DBMS + AI
    1. 6.1. SIGMOD'17 - OtterTune
    2. 6.2. CIDR'19 - Query Optimizer through DL
    3. 6.3. TKDE'20 - Database Meets AI: A Survey
    4. 6.4. SIGMOD'21 - MB2
    5. 6.5. SIGMOD'21 - Scalable Multi-Query Execution using Reinforcement Learning
    6. 6.6. VLDB'21 - CGPTuner
    7. 6.7. CIDR'22 - Zero-Shot Learning on DBMS
    8. 6.8. SIGMOD'22 - Balsa
    9. 6.9. SIGMOD'22 - TScout
  9. 7. DBMS Experiments
    1. 7.1. VLDB'22 - A Study of Database Performance Sensitivity to Experiment Settings
  10. 8. Reinforcement Learning to Rank
    1. 8.1. WWW'20 - RLIRank

Paper Notes

DBMS Scalability

  • VLDB'19 - STAR: Scaling Transactions through Asymmetric Replication
  • TKDE'20 - Hihooi: A Database Replication Middleware forScaling Transactional Databases Consistently