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Deterministic DBMSs Has Been Proved to 
Be Highly Scalable and Highly Available
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Good Scalability Rely on High 
Quality of Data Partitions

• However, in order to achieve such performance, 

the database must be well partitioned.

• Poor data partitions introduce
╸ Many distributed transactions.

╸ Unbalanced loads.
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Deterministic DBMSs Are 
Sensitive to Stalled Transactions

• Distributed transactions and overloaded nodes all 

introduce additional delay for transactions.

• The clogging problem

6

Thomson at el., “The Case for Determinism in Database Systems”, in VLDB’10
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Things Getting Worse on
Dynamic Workloads

• Dynamic workloads makes the best data 

partitions constantly change.

• In order to fit the latest workload, a DBMS may 

have to keep re-partitioning its database on-line.
╸ This also requires the system to perform a time-

consuming data migration.
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Even Worse:
Episodic Workload Changes

• Blast workloads are usually unpredictable and 

show in a small amount of time.
╸ It is hard for a DBMS to change its data partitions for 

these workloads in time.
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Load Traces from a Cluster owned by Google in 30 Days
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Performing Effective Online Data Re-
partitioning Requires Cooperation of 

Many Different Components
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Is it possible to jointly optimize data partitioning, 
data migration, and transaction execution for 

dynamic and episodic workloads in a simple way?
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Look-Back Approaches

• Key Idea: plans new data partitions based on a 

past workload history.
╸ E.g., E-Store [VLDB’14], Clay [VLDB’16]

• Cons
╸ Needs to perform dedicated and slow data migrations.

╸ Cannot react against unpredictable and episodic 

workload changes.
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Look-Present Approaches

• Key Idea: uses data-fusion to merge/migrate data 

for the current transaction on the fly.
╸ E.g., G-Store[SoCC’10], LEAP[SIGMOD’16]

• Benefit from temporal locality.
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Problem: Data Accumulation

• If the system always routes transactions based on 

where the data are, it will be easy for the data to 

accumulate in a single partition/machine.

• Bad for load balancing.
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Moreover,
all these approaches do not consider how to 

fit data partitions for future workloads.

They cannot react to unpredictable workloads in time!
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A joint design that address all above issues 
in a single module with a single technique.

Hermes



Key Observation: Data Re-
partitioning by Transaction Routing

• With data-fusion technique, we can guide data 

flowing to where we want by simply routing 

transactions to proper locations.
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Data Fusion on a Deterministic DBMS 
= Lightweight Data Migrations

• Because the database state is deterministic, data-

fusion is much more lightweight in deterministic 

DBMS than in a traditional DBMS.
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How Do We Leverage On Data-Fusion To
Help The System React to Dynamic Workloads?



Key Idea: Look into the Future

• Instead of routing a transaction request at a time, 
we batch requests and route all of them at once. 

• Why? The router can analyze the dependencies 
between future transactions to foresee possible 
data partitions resulted from routing plans.
╸ So that it can find the best routing plan that leads to 

the best data partitions.

• We call it the prescient routing.
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The Prescient Transaction Router
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Is this a good routing plan?



23

What Exactly is the Routing Algorithm?

Our objective for good data partitions:
- The loads are balanced among the machines
- The number of distributed transactions are minimized



• The router may reorder transaction requests for 

better performance.

Step 1: Routes Transactions Such That # 
of Dist. Transactions Are Minimized
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• Note that T5 will migrate record E to partition 1 

because of data fusion.

# of Dist. Transactions: 1
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Step 2: Tries to Reroute 
Transactions to Balance Loads

• With a relaxed condition: allow to create one 

more distributed transaction.
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• The load are balanced. ✓

• Not creates more than one dist. transaction. ✓

# of Dist. Transactions: 2
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What If It Cannot Find a Balanced Schedule
Under This Condition?

Then, we relax the condition more until it finds one.



Please Check Our Paper for 
More Information!

• How to maintain data partitioning across machine 

without additional cost?

• How to work with dynamic machine provisioning?

• What if a transaction aborts?
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The Overall Performance

31

Outperforms
all the baselines



Latency Breakdown
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39%~55% Lower

Low Routing Overhead (4%)



Resource Utilization and 
Consumption
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CPU Utilized More

Not Introduce
Additional Network
Overhead
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Simple Hotspot Workloads
A workload consisting of a hotspot that receives 90% of workloads.

The hotspot changes every 450 seconds.



Hermes Achieves Fast Adaptation 
and Lightweight Migration
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Workload changes
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Conclusion

• We proposed Hermes based on the following key 
observations:
╸ Transaction routing with data fusion controls data 

partitions.
╸ Looking into the future by batching transaction 

requests.

• We showed the effectiveness of Hermes on both 
complex and simple dynamic workloads, which 
shows how fast Hermes adapts to new workloads.
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Q&A

• Please contact me if you have more questions
╸ yslin@datalab.cs.nthu.edu.tw

• Slides available at
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