
Don’t Look Back, Look into the Future:
Prescient Data Partitioning and Migration for

Deterministic Database Systems

1

Yu-Shan Lin Ching Tsai Shan-Hung Wu

National Tsing Hua University, Taiwan

Tz-Yu Lin Yun-Sheng Chang

Outline

• Background
╸ When a deterministic DBMS meets dynamic workloads

• Related Work
╸ Look-Back Approaches
╸ Look-Present Approaches

• Hermes
╸ Key Observation
╸ Key Idea
╸ The Prescient Routing Algorithm

• Experiment Results
• Conclusion

2

Outline

• Background
╸ When a deterministic DBMS meets dynamic workloads

• Related Work
╸ Look-Back Approaches
╸ Look-Present Approaches

• Hermes
╸ Key Observation
╸ Key Idea
╸ The Prescient Routing Algorithm

• Experiment Results
• Conclusion

3

Deterministic DBMSs Has Been Proved to
Be Highly Scalable and Highly Available

4

Partition 1 Partition 2

Replica A

Partition 1 Partition 2

Replica B

Clients

Tx 1

Tx 2

Tx 1

Tx 2

Tx 1

Tx 2

Tx 1

Tx 2

Total Ordering Assumption: No ad-hoc txs

No 2PC

[SIGMOD’12 - Calvin]

Good Scalability Rely on High
Quality of Data Partitions

• However, in order to achieve such performance,

the database must be well partitioned.

• Poor data partitions introduce
╸ Many distributed transactions.

╸ Unbalanced loads.

5

Deterministic DBMSs Are
Sensitive to Stalled Transactions

• Distributed transactions and overloaded nodes all

introduce additional delay for transactions.

• The clogging problem

6

Thomson at el., “The Case for Determinism in Database Systems”, in VLDB’10

Deterministic DBMS

Traditional DBMS

Many transactions stall here.

Things Getting Worse on
Dynamic Workloads

• Dynamic workloads makes the best data

partitions constantly change.

• In order to fit the latest workload, a DBMS may

have to keep re-partitioning its database on-line.
╸ This also requires the system to perform a time-

consuming data migration.

7

Even Worse:
Episodic Workload Changes

• Blast workloads are usually unpredictable and

show in a small amount of time.
╸ It is hard for a DBMS to change its data partitions for

these workloads in time.

8

Load Traces from a Cluster owned by Google in 30 Days

Blasts

Performing Effective Online Data Re-
partitioning Requires Cooperation of

Many Different Components

9

Data
Partitioning

Data
Migrations

Transaction
Execution

Online Data
Re-Partitioning

10

Is it possible to jointly optimize data partitioning,
data migration, and transaction execution for

dynamic and episodic workloads in a simple way?

Outline

• Background
╸ When a deterministic DBMS meets dynamic workloads

• Related Work
╸ Look-Back Approaches
╸ Look-Present Approaches

• Hermes
╸ Key Observation
╸ Key Idea
╸ The Prescient Routing Algorithm

• Experiment Results
• Conclusion

11

Look-Back Approaches

• Key Idea: plans new data partitions based on a

past workload history.
╸ E.g., E-Store [VLDB’14], Clay [VLDB’16]

• Cons
╸ Needs to perform dedicated and slow data migrations.

╸ Cannot react against unpredictable and episodic

workload changes.

12

Look-Present Approaches

• Key Idea: uses data-fusion to merge/migrate data

for the current transaction on the fly.
╸ E.g., G-Store[SoCC’10], LEAP[SIGMOD’16]

• Benefit from temporal locality.

13

Partition 1 Partition 2

A B C D

Transaction 1
Read (A), Write(C)

Problem: Data Accumulation

• If the system always routes transactions based on

where the data are, it will be easy for the data to

accumulate in a single partition/machine.

• Bad for load balancing.

14

Partition 1 Partition 2

AB C D

Transaction 2
Read (A), Write(B)

15

Moreover,
all these approaches do not consider how to

fit data partitions for future workloads.

They cannot react to unpredictable workloads in time!

Outline

• Background
╸ When a deterministic DBMS meets dynamic workloads

• Related Work
╸ Look-Back Approaches
╸ Look-Present Approaches

• Hermes
╸ Key Observation
╸ Key Idea
╸ The Prescient Routing Algorithm

• Experiment Results
• Conclusion

16

17

A joint design that address all above issues
in a single module with a single technique.

Hermes

Key Observation: Data Re-
partitioning by Transaction Routing

• With data-fusion technique, we can guide data

flowing to where we want by simply routing

transactions to proper locations.

18

Partition 1 Partition 2

A B C D

Transaction 1
Read (A), Write(C)

Migrate Record A

Record A is migrated to where
transaction 1 is routed to.

Data Fusion on a Deterministic DBMS
= Lightweight Data Migrations

• Because the database state is deterministic, data-

fusion is much more lightweight in deterministic

DBMS than in a traditional DBMS.

19

Partition 1 Partition 2

A B C D

Transaction 1
Read (A), Write(C)

No 2PC

20

How Do We Leverage On Data-Fusion To
Help The System React to Dynamic Workloads?

Key Idea: Look into the Future

• Instead of routing a transaction request at a time,
we batch requests and route all of them at once.

• Why? The router can analyze the dependencies
between future transactions to foresee possible
data partitions resulted from routing plans.
╸ So that it can find the best routing plan that leads to

the best data partitions.

• We call it the prescient routing.

21

22

The Prescient Transaction Router

Routing Plan

Data Partitions
(after Data-Fusion)

Many dist. transactions?
Are the loads balanced?

Resulting Overhead

Is this a good routing plan?

23

What Exactly is the Routing Algorithm?

Our objective for good data partitions:
- The loads are balanced among the machines
- The number of distributed transactions are minimized

• The router may reorder transaction requests for

better performance.

Step 1: Routes Transactions Such That #
of Dist. Transactions Are Minimized

24

T1: Read {C}, Write {C}
T2: Read {C}, Write {C}
T3: Read {D}, Write {D}
T4: Read {D}, Write {D}

T5: Read {A, B, E}, Write {A, E}
T6: Read {A, B, E}, Write {A, E}

A Batch of Requests

T1 T2 T3 T4 T5 T6

Partition 1 Partition 2

A B C D

Partition 3

E F

• Note that T5 will migrate record E to partition 1

because of data fusion.

of Dist. Transactions: 1

25

T1: Read {C}, Write {C}
T2: Read {C}, Write {C}
T3: Read {D}, Write {D}
T4: Read {D}, Write {D}

T5: Read {A, B, E}, Write {A, E}
T6: Read {A, B, E}, Write {A, E}

A Batch of Requests

T1

T2

T3

T4

T5

T6

Partition 1 Partition 2

A B C D

Partition 3

E F

Step 2: Tries to Reroute
Transactions to Balance Loads

• With a relaxed condition: allow to create one

more distributed transaction.

26

T1: Read {C}, Write {C}
T2: Read {C}, Write {C}
T3: Read {D}, Write {D}
T4: Read {D}, Write {D}

T5: Read {A, B, E}, Write {A, E}
T6: Read {A, B, E}, Write {A, E}

A Batch of Requests

T1

T2

T3

T4

T5

T6

Partition 1 Partition 2

A B C D

Partition 3

E F

• The load are balanced. ✓

• Not creates more than one dist. transaction. ✓

of Dist. Transactions: 2

27

T1: Read {C}, Write {C}
T2: Read {C}, Write {C}
T3: Read {D}, Write {D}
T4: Read {D}, Write {D}

T5: Read {A, B, E}, Write {A, E}
T6: Read {A, B, E}, Write {A, E}

A Batch of Requests

T1

T2

T3

T4

T5

T6

Partition 1 Partition 2

A B C D

Partition 3

E F

28

What If It Cannot Find a Balanced Schedule
Under This Condition?

Then, we relax the condition more until it finds one.

Please Check Our Paper for
More Information!

• How to maintain data partitioning across machine

without additional cost?

• How to work with dynamic machine provisioning?

• What if a transaction aborts?

29

Outline

• Background
╸ When a deterministic DBMS meets dynamic workloads

• Related Work
╸ Look-Back Approaches
╸ Look-Present Approaches

• Hermes
╸ Key Observation
╸ Key Idea
╸ The Prescient Routing Algorithm

• Experiment Results
• Conclusion

30

The Overall Performance

31

Outperforms
all the baselines

Latency Breakdown

32

39%~55% Lower

Low Routing Overhead (4%)

Resource Utilization and
Consumption

33

CPU Utilized More

Not Introduce
Additional Network
Overhead

34

Simple Hotspot Workloads
A workload consisting of a hotspot that receives 90% of workloads.

The hotspot changes every 450 seconds.

Hermes Achieves Fast Adaptation
and Lightweight Migration

35

Workload changes

Outline

• Background
╸ When a deterministic DBMS meets dynamic workloads

• Related Work
╸ Look-Back Approaches
╸ Look-Present Approaches

• Hermes
╸ Key Observation
╸ Key Idea
╸ The Prescient Routing Algorithm

• Experiment Results
• Conclusion

36

Conclusion

• We proposed Hermes based on the following key
observations:
╸ Transaction routing with data fusion controls data

partitions.
╸ Looking into the future by batching transaction

requests.

• We showed the effectiveness of Hermes on both
complex and simple dynamic workloads, which
shows how fast Hermes adapts to new workloads.

37

Q&A

• Please contact me if you have more questions
╸ yslin@datalab.cs.nthu.edu.tw

• Slides available at

38

mailto:yslin@datalab.cs.nthu.edu.tw

