
MgCrab
Transaction Crabbing for Live Migration in

Deterministic Database Systems

1

National Tsing Hua University, Taiwan1

University of Chicago 2

Yu-Shan Lin1 Shao-Kan Pi1 Meng-Kai Liao1 Ching Tsai1 Aaron J. Elmore2 Shan-Hung Wu1

Outline

• Background
╸ Elastic Load Balancing

• Related Work
• MgCrab
• Experiments Results
• Conclusion

2

Motivation: Hot Tenants

• An application gains flash crowds originating from
viral popularity.

3

Machine 1

New User

Tenant 1 Tenant 2

Tenant 3

Tenant 4 Tenant 5

Tenant 6

Machine 2

New User New User New User

Solution: Adding More Resource by
Increasing Provisioning Machines

4

Machine 1

Tenant 1 Tenant 2

Tenant 3

Tenant 4 Tenant 5

Tenant 6

Machine 2

Machine 3

Tenant 1

How to Move Data On The Fly While
Keeping Serving Transactions?

5

Machine 1

Tenant 2

Tenant 3

Tenant 4 Tenant 5

Tenant 6

Machine 2

Machine 3

Client

Client

Client

Client?

?

?

?Tenant 1

Tenant 1

For such cases,
we need Live Migrations techniques!

6

Given a migration plan, to migrate data from the source node to the
destination node while continuously serving incoming transactions.

Outline

• Background
• Related Work

╸ Source-based Approaches
╸ Destination-based Approaches
╸ Either-node Approaches

• MgCrab
• Experiments Results
• Conclusion

7

3 Variants

• Based on how they serve incoming transactions…
╸ Source-based approaches
╸ Destination-based approaches
╸ Either-node approaches

8

A

Source Node Destination Node

B C

Data records to be migrated

Source-based Approaches

• Pro
╸ The cache is warm
╸ Data are likely available on source nodes.

• Example: Albatross [VLDB’11]

9

Tx 1: R(A), W(A)

A

Source Node Destination Node

B C

Execute

Migrate Data
in Background

Con: Termination Problem

• Updates are always on the source node.
╸ Need to be sent to the destination node.

10

A

Source Node Destination Node

B C

Tx 1: R(A), W(A)
Execute

Migrate Data
in Background

A B

Con: Termination Problem

• Updates are always on the source node.
╸ Need to be sent to the destination node.

11

A’

Source Node Destination Node

B C A B

Tx 1: R(A), W(A)
Execute

A’

Migrate Data
in Background

Con: Termination Problem

• Updates are always on the source node.
╸ Need to be sent to the destination node.

• Needs a stop-and-copy in the end => service
downtime

12

A’

Source Node Destination Node

B C B

Tx 2: R(A), W(A)

Execute

A’A’’

Migrate Data
in BackgroundIt May Never End !

Destination-based Approaches

• Pros
╸ Always terminates since it doesn’t have to migrate any

update.
• Example: Zephyr [SIGMOD’12]

13

Tx 1: R(A), W(A)

A

Source Node Destination Node

B C

Execute

Con: Slow in the Beginning

• Due to the absence of data records on the
destination node -> Needs to wait for pulling

14

Tx 1: R(A), W(A)

Source Node Destination Node

B C

Execute
I need A to
execute Tx1

Pull A
A

Either-Node Approaches

• Running transactions on one of nodes by carefully
tracking the locations of records.
╸ By default, it runs txs on destination node.

• Example: Squall [SIGMOD’15]

15

Tx 1: R(A, B), W(A)

Source Node Destination Node

B C

Execute

Migrating
A

If a Tx Can Get Its All Data on the Source
=> Run the Tx on the Source

• Pros
╸ Slightly avoids high latency in the beginning
╸ No need for an atomic handover

16

Tx 2: R(B, C), W(C)

Source Node Destination Node

B C

Execute

A

Not Enough to Solve the
Slowdown in the Beginning

• It is still possible that a transaction needs data
spanning on the source and the destination.

17

Tx 3: R(A, B), W(A)

Source Node Destination Node

B C

Execute

Pull B
A

Waiting for
Pulling B

Outline

• Background
• Related Work
• MgCrab

╸ Main Idea: both-nodes approaches
╸ Foreground Pushes (Crabbing)
╸ Two-Phase Background Pushes

• Experiments Results
• Conclusion

18

MgCrab: A Both-Node Approach

• Main Idea: how about running transactions on
both nodes?
╸ Like creating a on-demand replica.

19

Tx 1: R(A), W(A)

A

Source Node Destination Node

B C

Execute

Tx 1: R(A), W(A)

Execute

MgCrab Lets Both Nodes
Response to Clients

• Benefit: the faster machine hides the latency of
the slow machine.

20

Tx 1: R(A), W(A)

A

Source Node Destination Node

B C

Execute

Tx 1: R(A), W(A)

Execute

Response

Client

Resp
onse

In the Beginning, MgCrab Hides
the Latency of Pulling

• Totally avoids the problem of destination-based
approaches.

21

Source Node Destination Node

B C

ExecuteExecute

Push B

Client

Tx 3: R(A, B), W(A)Tx 3: R(A, B), W(A)

Response

Waiting for B

A

Later, Running Txs on the
Destination is Faster (scaling-out)
• Because the destination usually has lower loading.

22

A

Source Node Destination Node

B C

ExecuteExecute

I’m busy

A

Client

Tx 4: R(A, B), W(A)Tx 4: R(A, B), W(A) Resp
onse

B

Wait, it sounds costly!
How to ensure consistency?

23

!

Consistency across replicas can be
easily achieved with determinism!

24

Partition 1 Partition 2

Replica A

Partition 1 Partition 2

Replica B

Clients

Tx 1

Tx 2
Tx 1

Tx 2

Tx 1

Tx 2

Tx 1

Tx 2

Total Ordering Assumption: No ad-hoc txs

No 2PC

Calvin [SIGMOD’12]

25

How Exactly Do We Migrate Data?

Foreground Pushes: Crabbing

• Migrates frequently used records via normal
transactions.

26

Source Node

Tx 1: R(A), W(A)

Destination Node

Tx 1: R(A), W(A)

B CA

Read A

Push A

You need A

Foreground Pushes: Crabbing

• Migrates frequently used records via normal
transactions.

27

Source Node

Tx 1: R(A), W(A)

Destination Node

Tx 1: R(A), W(A)

B CA

Write A Write A

A’ A’

No 2PC

Record A is migrated!

Background Pushes

• For the rest of data (cold data), MgCrab migrates
them in chunks using dedicated transactions.

28

BG Push Tx

A

Source Node Destination Node

B C

BG Push Tx

Push Chunk {B, C}
A B C

Pitfall: Background pushes are
more costly than we thought

29

!

How Previous Work Do
Background Pushes

30

• Workflow in a background push:
1. Locks all records in the chunk.
2. Copies and sends the records to the destination.
3. Applies the records to the storage.
4. Unlocks the records.

Blocks bunches of transactions

We Propose: Two-Phase
Background Pushes

31

• Observation: only needs to lock records when the
records are applied to the destination.

1. Copies and sends the records to the destination.

2. Locks all records in the chunk.
3. Applies the untouched records to the storage.
4. Unlocks the records.

Phase1 on Source Node

Phase 2 on Destination Node

Two-Phase Background Pushes

32

• BG Push Phase 1: copies and sends data to the
destination without acquiring locks.
╸ The data may be inconsistent.

BG Push Tx (P1)

A

Source Node Destination Node

B C

BG Push Tx (P1)

Push Chunk {B, C}
A B C Invisible

Two-Phase Background Pushes

33

• Other transactions can still modify the records in
the chunk.

A

Source Node Destination Node

C B C

Tx 2: R(B), W(B)
Execute

Tx 2: R(B), W(B)
Execute

Invisible
Push B (crabbing)

BB

Two-Phase Background Pushes

34

• Other transactions can still modify the records in
the chunk.

A

Source Node Destination Node

C B C

Tx 2: R(B), W(B)
Execute

Tx 2: R(B), W(B)
Execute

InvisibleB’ B’

Two-Phase Background Pushes

35

• BG Push Phase 2: abandons outdated records, and
then lock and apply the rest records to the storage
╸ The outdated records have been migrated in

foreground pushes anyway.

A

Source Node Destination Node

C B C InvisibleB’ B’

BG Push Tx (P2)BG Push Tx (P2)

More Discussions & Optimizations

• Generalization
╸ Range queries?
╸ Distributed transactions?
╸ Concurrent migration plans?

• Optimizations
╸ Catching-up phase & Caught-up phase

• See the paper!

36

Outline

• Background
• Related Work
• MgCrab
• Experiments Results
• Conclusion

37

Settings

• Baselines
╸ Stop-and-copy
╸ Squall (either-node approach)

• Benchmarks
╸ YCSB
╸ TPC-C

38

Scaling-out in TPC-C

39

Stable throughput

Same migration time
(equal chunk size)

Scaling-out in YCSB

40

Shorter migration time

Consolidation in YCSB

41

Conclusion for Takeaway

• Either-node approaches do not solve all the
problems.

• Both-node execution simplifies design and reduces
impact.
╸ Because determinism achieves lightweight replication.

• Background pushes have pitfall, and thus we
divide a push into two phases.

42

Thanks for listening!
Q&A

43

Let’s meet at poster 26.2 later!

Slides

