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Motivation: Hot Tenants

• An application gains flash crowds originating from 
viral popularity.
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Solution: Adding More Resource by 
Increasing Provisioning Machines
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How to Move Data On The Fly While 
Keeping Serving Transactions?
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For such cases,
we need Live Migrations techniques!
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Given a migration plan, to migrate data from the source node to the 
destination node while continuously serving incoming transactions.
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3 Variants

• Based on how they serve incoming transactions…
╸ Source-based approaches
╸ Destination-based approaches
╸ Either-node approaches
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Source-based Approaches

• Pro
╸ The cache is warm
╸ Data are likely available on source nodes.

• Example: Albatross [VLDB’11]
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Con: Termination Problem

• Updates are always on the source node.
╸ Need to be sent to the destination node.
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Con: Termination Problem

• Updates are always on the source node.
╸ Need to be sent to the destination node.
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Con: Termination Problem

• Updates are always on the source node.
╸ Need to be sent to the destination node.

• Needs a stop-and-copy in the end => service 
downtime
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Destination-based Approaches

• Pros
╸ Always terminates since it doesn’t have to migrate any 

update.
• Example: Zephyr [SIGMOD’12]
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Con: Slow in the Beginning

• Due to the absence of data records on the 
destination node -> Needs to wait for pulling
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Either-Node Approaches

• Running transactions on one of nodes by carefully 
tracking the locations of records.
╸ By default, it runs txs on destination node.

• Example: Squall [SIGMOD’15]

15

Tx 1: R(A, B), W(A)

Source Node Destination Node

B C

Execute

Migrating
A



If a Tx Can Get Its All Data on the Source 
=> Run the Tx on the Source

• Pros
╸ Slightly avoids high latency in the beginning
╸ No need for an atomic handover
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Not Enough to Solve the 
Slowdown in the Beginning

• It is still possible that a transaction needs data 
spanning on the source and the destination.
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MgCrab: A Both-Node Approach

• Main Idea: how about running transactions on 
both nodes?
╸ Like creating a on-demand replica.
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MgCrab Lets Both Nodes 
Response to Clients

• Benefit: the faster machine hides the latency of 
the slow machine.
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In the Beginning, MgCrab Hides 
the Latency of Pulling

• Totally avoids the problem of destination-based 
approaches.
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Later, Running Txs on the 
Destination is Faster (scaling-out)
• Because the destination usually has lower loading.
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Wait, it sounds costly!
How to ensure consistency?
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Consistency across replicas can be 
easily achieved with determinism!
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How Exactly Do We Migrate Data?



Foreground Pushes: Crabbing

• Migrates frequently used records via normal 
transactions.
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Foreground Pushes: Crabbing

• Migrates frequently used records via normal 
transactions.
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Background Pushes

• For the rest of data (cold data), MgCrab migrates 
them in chunks using dedicated transactions.
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Pitfall: Background pushes are 
more costly than we thought
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How Previous Work Do 
Background Pushes
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• Workflow in a background push:
1. Locks all records in the chunk.
2. Copies and sends the records to the destination.
3. Applies the records to the storage.
4. Unlocks the records.

Blocks bunches of transactions



We Propose: Two-Phase
Background Pushes
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• Observation: only needs to lock records when the 
records are applied to the destination.

1. Copies and sends the records to the destination.

2. Locks all records in the chunk.
3. Applies the untouched records to the storage.
4. Unlocks the records.

Phase1 on Source Node

Phase 2 on Destination Node



Two-Phase Background Pushes
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• BG Push Phase 1: copies and sends data to the 
destination without acquiring locks.
╸ The data may be inconsistent.
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Two-Phase Background Pushes
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• Other transactions can still modify the records in 
the chunk.
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Two-Phase Background Pushes
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• Other transactions can still modify the records in 
the chunk.
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Two-Phase Background Pushes
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• BG Push Phase 2: abandons outdated records, and  
then lock and apply the rest records to the storage
╸ The outdated records have been migrated in 

foreground pushes anyway.
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More Discussions & Optimizations

• Generalization
╸ Range queries?
╸ Distributed transactions?
╸ Concurrent migration plans?

• Optimizations
╸ Catching-up phase & Caught-up phase

• See the paper!
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Settings

• Baselines
╸ Stop-and-copy
╸ Squall (either-node approach)

• Benchmarks
╸ YCSB
╸ TPC-C
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Scaling-out in TPC-C
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Stable throughput
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Scaling-out in YCSB
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Shorter migration time



Consolidation in YCSB
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Conclusion for Takeaway

• Either-node approaches do not solve all the 
problems.

• Both-node execution simplifies design and reduces 
impact.
╸ Because determinism achieves lightweight replication.

• Background pushes have pitfall, and thus we 
divide a push into two phases.
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Thanks for listening!
Q&A
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Let’s meet at poster 26.2 later!
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