
VanillaDB
A Tutorial-Oriented RDBMS

Yu-Shan Lin @ COSCUP 2017

1

About Me

• Yu-Shan Lin (林林⽟玉⼭山)

• Net name: SLMT

• PhD student in Datalab, CS, NTHU

• Research topic: DBMS

• http://www.slmt.tw

2

http://www.slmt.tw

Why Should You Learn The Internal
of Databases Systems ?

3

10 Richest People in the World
Rank Name Owned Company Net Worth

1 Bill Gates $ 85.2 billion

2 Warren Buffett $ 77.2 billion

3 Jeff Bezos $ 73.1 billion

4 Amancio Ortega $ 68.5 billion

5 Mark Zuckerberg $ 58.5 billion

6 Carlos Slim Helú $ 50.7 billion

7 Charles Koch $ 47.9 billion

7 David Koch $ 47.9 billion

9 Larry Ellison $ 45.3 billion

10 Ingvar Kamprad $ 43 billion

Source: Business Insider
4

http://www.businessinsider.com/30-richest-people-on-earth-2017-3/%2310-ingvar-kamprad-20

10 Richest People in the World
Rank Name Owned Company Net Worth

1 Bill Gates Microsoft $ 85.2 billion

2 Warren Buffett Berkshire Hathaway $ 77.2 billion

3 Jeff Bezos Amazon.com $ 73.1 billion

4 Amancio Ortega Inditex $ 68.5 billion

5 Mark Zuckerberg Facebook $ 58.5 billion

6 Carlos Slim Helú Grupo Carso $ 50.7 billion

7 Charles Koch Koch Industries $ 47.9 billion

7 David Koch Koch Industries $ 47.9 billion

9 Larry Ellison Oracle $ 45.3 billion

10 Ingvar Kamprad IKEA $ 43 billion

Source: Business Insider
5

http://www.businessinsider.com/30-richest-people-on-earth-2017-3/%2310-ingvar-kamprad-20

10 Richest People in the World
Rank Name Owned Company Net Worth

1 Bill Gates Microsoft $ 85.2 billion

2 Warren Buffett Berkshire Hathaway $ 77.2 billion

3 Jeff Bezos Amazon.com $ 73.1 billion

4 Amancio Ortega Inditex $ 68.5 billion

5 Mark Zuckerberg Facebook $ 58.5 billion

6 Carlos Slim Helú Grupo Carso $ 50.7 billion

7 Charles Koch Koch Industries $ 47.9 billion

7 David Koch Koch Industries $ 47.9 billion

9 Larry Ellison Oracle $ 45.3 billion

10 Ingvar Kamprad IKEA $ 43 billion

Source: Business Insider
6

http://www.businessinsider.com/30-richest-people-on-earth-2017-3/%2310-ingvar-kamprad-20

10 Richest People in the World
Rank Name Owned Company Net Worth

1 Bill Gates Microsoft $ 85.2 billion

2 Warren Buffett Berkshire Hathaway $ 77.2 billion

3 Jeff Bezos Amazon.com $ 73.1 billion

4 Amancio Ortega Inditex $ 68.5 billion

5 Mark Zuckerberg Facebook $ 58.5 billion

6 Carlos Slim Helú Grupo Carso $ 50.7 billion

7 Charles Koch Koch Industries $ 47.9 billion

7 David Koch Koch Industries $ 47.9 billion

9 Larry Ellison Oracle $ 45.3 billion

10 Ingvar Kamprad IKEA $ 43 billion

Database systems play very important roles
 in these companies !

Source: Business Insider
7

http://www.businessinsider.com/30-richest-people-on-earth-2017-3/%2310-ingvar-kamprad-20

“I don’t own a company.
Why should I care ? ”

How About Being A Database Administrator (DBA) ?

8

The Median Pay for a DBA
is 84,950 USD / year in 2016 !

Source: Bureau of Labor Statistics

84,950 USD ≒ 2,564,528 TWD

(2017/8/4)

9

https://www.bls.gov/ooh/computer-and-information-technology/database-administrators.htm

How Does It Help DBA ?

• Understanding how a DBMS works helps a DBA know
what he/she needs to consider while tuning it.

• Buffer Pool ?

• Join Buffer & Sort Buffer ?

• Locks ?

10

“I have already had a coding job.”
Well… learning this can also help you in other fields, too !

11

How Does Learning DB Help
You in Other Fields ?

• A database management system (DBMS) is a extremely
complicated and highly optimized system.

• Learning the internal of such systems help you know…

• how to read the code of such systems.

• what you need to consider while altering such systems.

• optimization techniques.

12

“If you are good enough to write code
for a DBMS, then you can write code on

almost anything else.”
 - Andy Pavlo @ CMU 15-721

13

Or, You May Be Just a Person
Who Wants to Know Everything

You came to the right place !!

Like Me !!

14

Just Curious

• How is a SQL processed in a DBMS ? (explained later)

• Why the data are still correct even when lots of user
accesses the same data at the same time ?

• Why can a DB recover to a normal state after it crashes ?

15

Outline
• Motivations

• Introduction to RDBMS

• A Day of a Query in VanillaDB

• Some Challenges of Developing a RDBMS

• VanillaDB Project

• Our Next Step ?

16

Outline
• Motivations

• Introduction to RDBMS

• A Day of a Query in VanillaDB

• Some Challenges of Developing a RDBMS

• VanillaDB Project

• Our Next Step ?

17

What Is Difference Between
a File System and a DBMS ?

18

Advantages of a Database System

• It answers queries fast.

• Queries (from multiple users) can execute concurrently
without affecting each other.

• It recovers from crash.

19

What Is a RDBMS ?

• RDBMS => Relational Database Management System

• Not just a database.

• Including a “management system”.

• So, what is “relational” ?

20

Relational Models

id name balance

1 Red 3300

2 Blue 2200

3 Green 4500

Relation

Schema

Row,

Record,

Tuple

Attribute, Field

21

Why Using Relations ?

• Easy to manage on disks.

• Easy to understand.

• Can be applied very complex queries (SQL).

22

SQL

balance

3000

id name balance

1 Red 3300

2 Blue 2200

3 Green 4500

SELECT	balance	FROM	account	WHERE	name	=	“Red";

23

Transactions

BEGIN	TRANSACTION;	

UPDATE	account	SET	balance	=	balance	-	100	WHERE	name	=	"Red";	

UPDATE	account	SET	balance	=	balance	+	100	WHERE	name	=	“Blue";	

COMMIT	TRANSACTION;

ACID

24

ACID

• Atomicity

• Consistency

• Isolation

• Isolation Levels

• Durability

25

A - Atomicity
• All or nothing

BEGIN	TRANSACTION;	

UPDATE	account	...	

UPDATE	account	...	

COMMIT	TRANSACTION;

BEGIN	TRANSACTION;	

UPDATE	account	...	

UPDATE	account	...	

COMMIT	TRANSACTION;

BEGIN	TRANSACTION;	

UPDATE	account	...	

UPDATE	account	...	

COMMIT	TRANSACTION;

None AllHalf

✘✔ ✔
26

C - Consistency
• The database must be consistent after transactions

committed.

User Specified Rule: Sum(balance) = 10000

BEGIN	TRANSACTION;	

UPDATE	account	...	

UPDATE	account	...	

COMMIT	TRANSACTION;

In Progress

Sum(balance) = 9900

All other transactions should not see this.

Inconsistent !!

27

I - Isolation

The result of concurrently executing {T1, T2, T3}.

The result of executing T1 -> T2 -> T3.

equals to

(or in other orders)

It is called Serializable Isolation.

28

Isolation Levels

Level Dirty Reads Non-Repeatable
Reads Phantoms

Read Uncommitted May Happen May Happen May Happen

Read Committed Safe May Happen May Happen

Repeatable Read Safe Safe May Happen

Serializable Safe Safe Safe

MySQL’s InnoDB uses Repeatable Read as default.

29

BTW, Do We Really
Need Serializable ?

Actually, most people only use READ COMMITTED ! [1]

[1] “What Are We Doing With Our Lives? Nobody Cares About Our Research on Concurrency Control” in SIGMOD’17

[2] “ACIDRain: Concurrency-Related Attacks on Database-Backed Web Applications” in SIGMOD’17

But, low isolation levels have security risks. [2]

30

D - Durability
• The committed results must be saved.

The data must be persistent even the system crashes !!

31

Outline
• Motivations

• Introduction to RDBMS

• A Day of a Query in VanillaDB

• Some Challenges of Developing a RDBMS

• VanillaDB Project

• Our Next Step ?

32

Example: Stock Accounts

id name balance
1 Red 3300
2 Blue 2200
3 Green 4500

buyer stock_id amount time

1 103 50 7/19

1 297 300 8/1

1 31 230 8/5

2 45 40 8/7

3 24 100 9/2account
stock_history

Query: Find a guy with money > 3000 and

buying at least one stock recently (>= 9/1).

33

Example Query

SELECT	name	FROM	account,	stock_history	WHERE	
				id	=	buyer	AND	balance	>	3000	AND	time	>=	9/1;

id name balance
1 Red 3300
2 Blue 2200
3 Green 4500

buyer stock_id amount time

1 103 50 7/19

1 297 300 8/1

1 31 230 8/5

2 45 40 8/7

3 24 100 9/2account
stock_history

34

A day of a query

Connection	conn	=	null;	
try	{	
				//	Connect	to	the	database	server	
				Driver	d	=	new	JdbcDriver();	
				conn	=	d.connect("jdbc:vanilladb://localhost",	null);	
				conn.setAutoCommit(false);	//	Using	transaction	
					
				//	Execute	the	query	
				Statement	stmt	=	conn.createStatement();	
				String	qry	=	"SELECT	name	FROM	account,	stock_history	WHERE"	
												+	"id	=	buyer	AND	balance	>	3000	AND	time	>=	9/1;";	
				ResultSet	rs	=	stmt.executeQuery(qry);	
					
				//	Loop	through	the	result	set	
				rs.beforeFirst();	
				while	(rs.next())	{	
								String	sName	=	rs.getString("name");	
								System.out.println(sName);	
				}	
				rs.close();	
					
				//	Commit	the	transaction	
				conn.commit();	
					
}	catch	(SQLException	e)	{	
				e.printStackTrace();	
}	finally	{	
				//	Cloes	the	connection	
				...	
}

35

A Day of A Query
1. Tokenizing & analyzing the SQL.

2. Parsing the SQL.

3. Planning (selecting a plan tree).

4. Creating a record scan.

5. Retrieving and returning records one by one.

6. Close the scan.

36

Lexical Analysis

Keywords Identifier

SELECT	name	FROM	account,	stock_history	WHERE	

				id	=	buyer	AND	balance	>	3000	AND	time	>=	9/1;

Constant

Tokenization

37

Parsing
Continuous checks using predefined rules

Start SELECT

FROM

A list of IDs

=, >=, <= …

A list of IDsWHERE

ID Constant
AND, OR

End

38

Plan Trees
SELECT	name	FROM	account,	stock_history	WHERE	
				id	=	buyer	AND	balance	>	3000	AND	time	>=	9/1;

π Projection {‘name’}

σ Selection {id = buyer & balance > 3000 & time > 9/1}

x Cross Product

Table {account} Table {stock_history}

These are called Relational Algebra
39

Executing A Plan
π {‘name’}

σ {id = buyer &
balance > 3000 & time > 9/1}

X

account stock_history

40

Executing A Plan
π {‘name’}

σ {id = buyer &
balance > 3000 & time > 9/1}

X

account stock_history

id name balance
1 Red 3300
2 Blue 2200
3 Green 4500

buyer stock_id amount time

1 103 50 7/19

1 297 300 8/1

1 31 230 8/5

2 45 40 8/7

3 24 100 9/2

id name balance buyer stock_id amount time

1 Red 3300 1 103 50 7/19

1 Red 3300 1 297 300 8/1

1 Red 3300 1 31 230 8/5

1 Red 3300 2 45 40 8/7

… … … … … … …

41

Executing A Plan
π {‘name’}

σ {id = buyer &
balance > 3000 & time > 9/1}

X

account stock_history

id name balance buyer stock_id amount time

1 Red 3300 1 103 50 7/19

1 Red 3300 1 297 300 8/1

1 Red 3300 1 31 230 8/5

1 Red 3300 2 45 40 8/7

… … … … … … …

id name balance buyer stock_id amount time

3 Green 4000 3 24 100 9/2

42

Executing A Plan
π {‘name’}

σ {id = buyer &
balance > 3000 & time > 9/1}

X

account stock_history

id name balance buyer stock_id amount time

3 Green 4500 3 24 100 9/2

name

Green

43

A Query May Have Multiple Plan Trees

π Projection {‘name’}

σ Selection {id = buyer}

x Cross Product

Table {account} Table {stock_history}

σ Selection {balance > 3000} σ Selection {time > 9/1}

44

Planners

• Also known as “Query Optimizer”.

• A DBMS records the statistics whiling executing updates.

• Then, a planner tries to find the best plan tree for a query
using the statistics.

45

How to Know The Plan Tree
My DBMS Used ?

Ask your DBMS to EXPLAIN your query !!
SLMT=# EXPLAIN SELECT name FROM account, stock_history WHERE id = buyer
AND balance > 3000 AND time >= 901;
 QUERY PLAN

 Hash Join (cost=24.16..86.76 rows=835 width=58)
 Hash Cond: (stock_history.buyer = account.id)
 -> Seq Scan on stock_history (cost=0.00..32.12 rows=590 width=4)
 Filter: ("time" >= 901)
 -> Hash (cost=20.62..20.62 rows=283 width=62)
 -> Seq Scan on account (cost=0.00..20.62 rows=283 width=62)
 Filter: (balance > 3000)
(7 rows)

A real example executed on PostgreSQL

46

Explain in VanillaDB

SQL> explain SELECT name FROM account, stock_history WHERE id = buyer
 AND balance > 3000 AND time >= 901

query-plan
———
->ProjectPlan (#blks=2, #recs=0)

->SelectPlan pred:(id=buyer) (#blks=2, #recs=0)
->MultiBufferProductPlan (#blks=2, #recs=0)

->SelectPlan pred:(balance>3000.0) (#blks=2, #recs=2)
->TablePlan on (account) (#blks=2, #recs=3)

->SelectPlan pred:(time>=901.0) (#blks=2, #recs=0)
->TablePlan on (stock_history) (#blks=2, #recs=5)

Actual #recs: 1

47

Ok, A Good Query Engine
Is Hard to Write

Maybe… other parts are easier ?

48

Outline
• Motivations

• Introduction to RDBMS

• A Day of a Query in VanillaDB

• Some Challenges of Developing a RDBMS

• VanillaDB Project

• Our Next Step ?

49

Don’t forget we need
to support ACID !!

50

How To Ensure Atomicity ?

We need logs.

51

Logging
• A DBMS logs each updates, maybe along with the old

value and the new value.

BEGIN	TRANSACTION;	
UPDATE	account	SET	balance	=	balance	-	100	WHERE	name	=	"Red";	
UPDATE	account	SET	balance	=	balance	+	100	WHERE	name	=	“Blue";	
COMMIT	TRANSACTION;

<Tx	1,	Begin>	
<Tx	1,	Set	Value,	Record	1,	Offset	30,	Old	3300,	New	3200>	
<Tx	1,	Set	Value,	Record	2,	Offset	30,	Old	2200,	New	2300>	
<Tx	1,	Commit>

SQLs

Logs
52

Undoing
• When a transaction rollbacks, it undoes the actions it has

performed.

BEGIN	TRANSACTION;	
UPDATE	account	SET	balance	=	balance	-	100	WHERE	name	=	"Red";	
UPDATE	account	SET	balance	=	balance	+	100	WHERE	name	=	“Blue";	
COMMIT	TRANSACTION;

<Tx	1,	Begin>	
<Tx	1,	Set	Value,	Record	1,	Offset	30,	Old	3300,	New	3200>

Undo: Set the value back to 3300.

53

A Question

Update The Record First ?
or

Write The Log First ?

Quick Answer: Write-Ahead Logging
Detail left for your homework :)

54

How To Ensure Consistency ?

Locks can help you !

55

Locks The Records
You Are Accessing

id name balance

1 Red 3300

2 Blue 2200

3 Green 4000

UPDATE	account	
SET	balance	=	balance	-	100	
WHERE	name	=	"Red";

Transaction 1 Tx1

Transaction 2

SELECT	balance	FROM	account	
WHERE	name	=	"Red";

✘

56

There Can Be Multiple
Types of Locks

• Shared Locks (S)

• Exclusive Locks (X)

• Multiple granularity locking (MGL)

• Intention Shared Locks (IS)

• Intention Exclusive Locks (IX)

• Shared with Intention Exclusive Locks (SIX)

57

Don’t Forget Deadlocks !

id name balance

1 Red 3300

2 Blue 2200

3 Green 4000

Transaction 1
Tx1

Transaction 2
Tx2

✘
✘

58

How To Solve Deadlocks ?

• Let’s see how your Operating Systems learned.

• Algorithms

• Deadlock-detection

• Deadlock-avoidance

• Deadlock-free locking

• Trade-off ?

59

How To Ensure Isolation ?

Locks again !

60

Isolation Levels

• The point is

• When to acquire locks ?

• When to release locks ?

• Which locks does it need to acquire ?

• Details left for your homework :)

61

Durability ?

All You Need Is …

A Disk.
Just save all of them to the disk !

62

Wait… Disks Are Slow

Ok… You may need …

some memory space to cache data.

63

Mmm.. What If The DBMS
Crashes During Execution ?

Well… You need to ensure

the data are flushed to disk during committing

Flushing

64

But… That Might Make
Committing Slow !!

65

66

67

Ok ! Not So Difficult.
Just flush logs instead.

A DBMS can recover the data by redoing the actions !

68

There Are More !!
• How to manage the records on the files ?

• Block management

• Which cached data need to be swapped ?

• Buffer replacement strategies

• Indexes

• What are they ? Can we eat them ?

69

“If you are good enough to write code
for a DBMS, then you can write code on

almost anything else.”
 - Andy Pavlo @ CMU 15-721

70

Outline
• Motivations

• Introduction to RDBMS

• A Day of a Query in VanillaDB

• Some Challenges of Developing a RDBMS

• VanillaDB Project

• Our Next Step ?

71

VanillaDB
http://www.vanilladb.org/

72

http://www.vanilladb.org/

Why Do We Write Our Own Database ?

• A modern DBMS uses lots of optimization technique and
has complicated structures.

• E.g. PostgreSQL, MySQL

• It is hard for beginners to read the source code of such
systems.

• Only a few DBMSs designed for tutorial purposes.

• have almost not been maintaining for a long time.

73

Sub-Projects of VanillaDB

• VanillaCore

• Single node, multi-threaded RDBMS.

• VanillaBench

• Benchmarks for testing VanillaCore.

• VanillaComm

• A collection of reliable group communication primitives.

74

VanillaCore
• Features

• Made in Taiwan.

• Highly Modularized.

• Implemented all necessary components for a RDBMS.

• Most of them are state-of-the-art.

• Using Serializable Isolation as default.

• Written in Java.

• No need to worry about segmentation fault.

75

Architecture of VanillaCore

76

VanillaBench
• A benchmark project focusing on testing VanillaCore.

• Implemented standard benchmarks

• (most of) TPC-C

• (part of) TPC-E

• (planning) YCSB

• There is also a micro-benchmark with multiple adjustable
parameters for fine-grained experiments.

77

VanillaComm

• A collection of communication primitives focusing on
provide reliable communication for distributed systems.

• This will be a part of our distributed DBMS project in the
next step.

78

How to Contribute ?

• Test & Firing Issues

• Documentation

• Let more people know !

79

Database Course
• A course that introduces database implementation from

scratch.

• https://nthu-datalab.github.io/clouddb/

80

https://nthu-datalab.github.io/clouddb/

81

Outline
• Motivations

• Introduction to RDBMS

• A Day of a Query in VanillaDB

• Some Challenges of Developing a RDBMS

• VanillaDB Project

• Our Next Step ?

82

ElaSQL
A relational database system made scalable, available, and elastic.

http://www.elasql.org/

83

http://www.elasql.org/

Credit
• {Freepik, Madebyoliver, Dave Gandy, Alfredo Hernandez, Madebyoliver,

Swifticons} @ FLATICON for icons

• My adviser: Shan-Hung Wu @ CS, NTHU

• The predecessors of this projects:

• Tsai-Yu Feng @ Appier

• {Meng-Kai Liao, Shao-Kan Pi} @ SeekrTech

• My team members:

• Ching Tsai, Tz-Yu Lin @ CS, NTHU

• Contributors: kyechou, johnnylu305, Dinglet, cyhsutw, jserv

84

http://www.flaticon.com/
http://www.cs.nthu.edu.tw/~shwu/
http://www.appier.com/
https://chingtsai.github.io/
https://github.com/zululin

Q & A
ElaSQLVanillaDB

85

