
Don’t Look Back, Look into the Future: Prescient Data
Partitioning and Migration for Deterministic Database Systems

Yu-Shan Lin, Ching Tsai, Tz-Yu Lin, Yun-Sheng Chang, Shan-Hung Wu
Nation Tsing Hua University

Taiwan, R.O.C.
{yslin,ctsai,tylin,yschang}@datalab.cs.nthu.edu.tw,shwu@cs.nthu.edu.tw

ABSTRACT
Deterministic database systems have been shown to significantly
improve the availability and scalability of a distributed database
system deployed on a shared-nothing architecture across WAN
while ensuring strong consistency. However, their scalability and
performance advantages highly depend on the quality of data par-
titioning due to the reduced flexibility in transaction processing.
Although a deterministic database system can employ workload
driven data (re-)partitioning and live data migration algorithms to
partition data, we found that the effectiveness of these algorithms
is limited in complex real-world environments due to the unpre-
dictability of machine workloads. In this paper, we present Hermes,
a deterministic database system prototype that, for the first time,
does not rely on sophisticated data partitioning to achieve high
scalability and performance. Hermes employs a novel transaction
routing mechanism that jointly optimizes the balance of machine
workloads, data (re-)partitioning, and live data migration by look-
ing into the queued transactions to be executed in the near future.
We conducted extensive experiments which show that Hermes is
able to yield 29% to 137% increase in transaction throughput as
compared to the state-of-the-art systems under complex real-world
workloads.

ACM Reference Format:
Yu-Shan Lin, Ching Tsai, Tz-Yu Lin, Yun-Sheng Chang, Shan-Hung Wu.
2021. Don’t Look Back, Look into the Future: Prescient Data Partitioning
and Migration for Deterministic Database Systems. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21), June
20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3448016.3452827

1 INTRODUCTION
There have been recent proposals for deterministic database sys-
tems [4, 15, 25, 32, 34, 35, 39] that guarantee if a system is given
the same transactional input, all nodes in the system will always
end in the same, consistent final state. This guarantee has been
shown [34, 35] to significantly improve the availability and scalabil-
ity of a distributed database system deployed on a shared-nothing
architecture across WAN while ensuring strong consistency; this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452827

Figure 1: 30-day workloads of some nodes in a cluster owned
by Google show unpredictable, episodic changes at small
time scales and changes due to dynamic machine provision-
ing. Axes x and y represent the elapsed time and CPU loads,
respectively.

is mainly because it eliminates the need for an agreement proto-
col (e.g., 2PC) between replicas or partitions when processing a
transaction. The benefits drive the development of new commercial
database systems such as VoltDB [4] and FaunaDB [2] that target
high-performance applications at scale.

However, the availability and scalability advantages of a deter-
ministic database system come at costs. One major drawback is the
reduced flexibility in dynamically reordering transactions [30, 34].
This leads to a serious performance drop when, for example, the
transaction needs to wait for the next command from a user, or to
wait until the accessing data is brought from disk or remote nodes
into the buffer pool. Therefore, modern deterministic database sys-
tems [1, 2, 4, 13, 35] usually 1) drop the support of ad-hoc queries
and take only the stored procedures as input, 2) use main-memory
storage or a large buffer pool, and 3) assume the presence of highly
optimized data partitions (also called shards) that minimize the
occurrence of distributed transactions and maximize the balance of
machine loads. This paper attempts to relax the last assumption.

It is not easy to obtain good data partitions in complex real-
world systems such as amulti-tenant/cloud database system serving
various applications around the world [10] or a trading system
used by the NYSE [22]. The workloads of each machine in these
systems are usually unpredictable and highly dynamic. In order
to investigate the effectiveness of current data (re-)partitioning
mechanisms, we use the YCSB benchmark with the loading traces
of a cluster owned by Google [28] to create a complicated and highly
fluctuating OLTP workload, and emulate the system performance
using a deterministic database system, Calvin [35]. We leave the
details of the experiment settings to Section 5. Figure 1 shows the
workload traces of some machines. We can see that the machine
workloads contain many fluctuations and unpredictable spikes and
shifts, which are the results of episodic events and changes of
machine provisioning in the cluster.

The “look-back” approaches. We first consider data partition-
ing and re-partitioning algorithms that analyze system statistics

https://doi.org/10.1145/3448016.3452827
https://doi.org/10.1145/3448016.3452827

5 10 15 20 25 30
Emulation Time (Hours)

200

400

600

Th
ro

ug
hp

ut
(K

 tx
s/

15
 se

cs
) Range Partition Clay LEAP

Figure 2: The performance of a deterministic database system,
Calvin [35], with some state-of-the-art data (re-)partitioning
approaches under the Google workload.

in the past. We implement Clay [31], a state-of-the-art online data
(re-)partitioning approach that traces the workload and migrates
“clumps” of data when the system does not meet an SLA. Figure 2
shows how the transaction throughput changes over time when the
system uses Clay to manage its data partitions. To our surprise, Clay
does not significantly outperform a naive range partitioning. This
is mainly due to the episodic events, which limit the effectiveness of
a “look-back” scheme because the events are not predictable from
the past. Furthermore, the look-back approaches usually require an
auxiliary data migration step [9, 19] to actually migrate the data.
Under changing workloads, this dedicated migration step may incur
a long delay that makes the data partitions outdated.

The “look-present” approaches. Another branch of studies
[7, 18] aims to overcome the problem of unpredictable workloads
by focusing on the present. Instead of precomputing data partitions,
these approaches migrate records to a single node in an on-demand
manner for each individual transaction so that the transaction and
the later transactions accessing the same set of records become
single-node transactions. We implement a state-of-the-art approach
called LEAP [18], whose performance is also shown in Figure 2. We
can see that this approach performs better than the naive range
partition and Clay, but the improvement is not significant as ex-
pected. With further investigation, we observe that when there
were many distributed transactions in the workload, LEAP tried to
group records together to benefit most from temporal locality. As a
result, almost all the active records were migrated to a single node,
which creates a bottleneck. On the other hand, if a look-present
approach chooses to balance machine loads, it may suffer from
the ping-pong problem. Figure 3 illustrates two example schedules
of four consecutive transactions that access records {𝐴, 𝐵} on a
two-node system, where node 1 has {𝐴, 𝐵} initially. Both schedules
evenly distribute the transactions to two nodes, but the first sched-
ule requires more data migrations than the second. Unfortunately,
in practice a look-present approach will more likely produce the
first schedule for load balancing since it has no knowledge about
𝑇3 and 𝑇4 while processing 𝑇2.

In this paper, we present Hermes, a deterministic database system
prototype based on the shared-nothing architecture that achieves
high transaction throughput without relying on sophisticated data
partitioning. In Hermes, the transaction routing module, which
is common in a distributed DBMS and was conventionally used
to balance machine loads, plays additional roles of dynamic data
(re-)partitioning and migration. It decides the route of a transac-
tion by looking into the future. Specifically, we propose a prescient
transaction routing algorithm that jointly optimizes load balancing,

S
e

ri
a

l
O

rd
e

r

A, B

(a) Schedule 1

T1

T2

T3

T4

Node 1 Node 2

A, B

A, B

(b) Schedule 2

T1

T2

T3

T4

Node 1 Node 2

A, B

Figure 3: An example of the ping-pong problem. Each block
represents a transaction, and each dashed line between nodes
represents a data migration.

dynamic data (re-)partitioning, and live data migration by analyzing
the read- and write-sets of successively queued transactions to be
executed in the near future in the deterministic transaction pro-
cessing flow.1 The reasons why the concerns of data partitioning
and migration can be controlled by the routing module are that 1)
the transaction processing is deterministic, so given a sequence of
transaction routes, the router can “foresee” how the corresponding
transactions will be executed, including the cross-machine data
movements triggered by distributed transactions, and 2) like the
look-present approaches, Hermes migrates data on the fly with
remote reads and writes of distributed transactions, so both data
partitioning and migration will be deterministic to the transaction
routes. As a result, Hermes can produce the schedule shown in
Figure 3(b) that simultaneously balances machine loads, minimizes
the number of distributed transactions, and avoids ping-pong data
migrations. Hermes also equips each node with a fusion table that
tracks the partitioning of hot records globally. This table makes the
system perform stably in cases of server scale-out and consolidation
because it not only facilitates the migration of hot data but also
prevents the migration of cold data (triggered by a server scale-out
or consolidation event) from interfering with normal transaction
processing. The support of dynamic machine provisioning was
neglected in traditional transaction routing literature, but is an
important feature nowadays for large-scale, multi-tenant systems.
The following summarizes our contributions:
• We present Hermes, a deterministic database system pro-
totype. To the best of our knowledge, Hermes is the first
deterministic database system whose performance does not
rely on high-quality data partitioning unavailable in complex
real-world applications.
• We propose the prescient transaction routing algorithm that
jointly optimizes load balancing, dynamic data (re-)partitioning,
and live data migration by looking into the future.
• We propose using a fusion table to isolate the migration of
hot and cold data. This allows Hermes to maintain stable
performance in cases of server scale-out and consolidation,
which are common nowadays in a large-scale deployment.
• We discuss practical considerations and prove (in our sup-
plementary materials [3]) the correctness of the proposed
techniques.

1See Section 2 for why transactions queue up on modern deterministic database
systems [1, 2, 4, 13, 35] and how the read- and write-sets of each transaction are
obtained.

Sequencer

Scheduler

Txn
Ex.

Txn
Ex.

Storage

Partition 1

Data Center A

Client Application

Data Center B

Migration
Controller

Sequencer

Txn
Ex.

Txn
Ex.

Storage
Migration
Controller

Partition 2

a

b

c

e

Scheduler

Batch of requests Batch of requests

d

Figure 4: The system architecture of Calvin [35] (Txn Ex.
stands for Transaction Executor). This system requires high-
quality data partitions to deliver high performance.

• We conduct extensive experiments to demonstrate the effec-
tiveness of Hermes and its techniques. The results show that
Hermes is able to yield 29% to 137% increase in transaction
throughput as compared to the state-of-the-art determin-
istic systems under complex real-world workloads. It also
responds much more quickly to the workload changes and
yields stable performance in the presence of dynamic hard-
ware provisioning.

The rest of the paper is organized as follows. We give some back-
ground knowledge of deterministic database systems in Section
2, followed by the introduction of Hermes in Section 3. We then
discuss some practical considerations in Section 4, and evaluate
the performance of Hermes in the next section. Section 6 reviews
related work and finally, Section 7 concludes the paper.

2 BACKGROUND
In this section, we introduce Calvin [35], a deterministic database
system that will be used as the baseline system when describing
Hermes in later sections. Note that our proposed techniques can be
applied to other deterministic database systems as well.

2.1 Deterministic Database Systems
Figure 4 shows the architecture of Calvin. Each node in a data cen-
ter has a sequencer, a scheduler and multiple transaction executors.
To make the results of transaction execution deterministic to the
input, Calvin ensures that 1) all machines process transactions in
the same total order, and 2) all sources of non-deterministic transac-
tion aborts are eliminated. These goals are achieved by processing
a (distributed) transaction as follows. First, the sequencers (Figure
4(a)) receive transaction requests issued from the clients and use
a total ordering protocol such as Paxos [16, 17] or Zab [27] to de-
termine a total order for these requests. Note that the sequencers

usually order a total number of batches of requests, each made by
an individual sequencer, in order to improve efficiency. Then, each
sequencer forwards the totally ordered transaction requests to the
scheduler residing on the same node (Figure 4(b)). The scheduler
determines if the node should ignore or process the request. The
scheduler will then forward the request to a transaction executor
(Figure 4(c)) if the read- or write-set of the request overlap with
the data stored locally. The transaction executor, after receiving
the request, will start a transaction and obtain locks following the
conservative ordered locking protocol to avoid deadlocks and non-
deterministic transaction aborts. Note that if there is a distributed
transaction that reads records from multiple nodes, all machines
having the records will have to execute the transaction by reading
the records and sending them to the machines owning the data
to be written by the transaction (Figure 4(d)). Once the read-set
is collected, the machine owning the data to be written performs
transaction logic, writes the data it owns, and commits the trans-
action. Calvin also makes some changes to the storage engine to
eliminate other sources of non-deterministic transaction aborts.

Note that Calvin, and most existing deterministic database sys-
tems, assume that the read-set and write-set of a transaction are
known before the transaction starts. Since modern OLTP applica-
tions usually access the database via stored procedures, this may
not be a too strong assumption. If the read-set and write-set cannot
be directly determined from a stored procedure, Calvin will use an
Optimistic Lock Location Prediction (OLLP) protocol that prepends
light-weight reconnaissance transactions to the transaction corre-
sponding to the stored procedure to determine the read-/write-set.

Calvin guarantees strong consistency and is able to ensure high
system availability even when the nodes are deployed across the
WAN. Every data center shown in Figure 4 contains a full replica of
data and can be placed in a geographically separated region. With
the help of determinism, there is no need for an expensive 2PC
to ensure the consistency between the replicas. As compared to
traditional, non-deterministic database systems, Calvin also offers
the advantage that the distributed transactions can be processed in
a more lightweight manner without the need for the 2PC protocol.
This advantage can lead to increased scalability when data in stor-
age are carefully partitioned such that distributed transactions are
rare and workloads of machines are balanced.

However, without high-quality data partitions, Calvin and most
existing deterministic database systems cannot improve the system
throughput and scalability [30, 39]. This is because the conservative
ordered locking protocol used by the transaction executors forbids
conflicting transactions from being dynamically re-ordered, which
is allowed in traditional 2PL. So, any stall in a transaction blocks
all following conflicting transactions in the total order and leads
to the clogging problem [34]. To avoid this problem, recent studies
have proposed dynamic data re-partitioning [31, 33] and live data
migration [8–10, 19] techniques trying to improve the quality of
data partitions so as to minimize the stalls due to network delay in
distributed transactions and overloaded machines. However, given
real-world, complex workloads like the one shown in Figure 1, it
is hard to find good data partitions using these techniques. It is
thus crucial to devise a new approach that allows a deterministic
database system to achieve high performance without relying on
high-quality data partitions.

3 HERMES
In this section, we present Hermes. For ease of presentation, we
use Calvin (see Section 2) as the baseline system, and assume that
the read-set and write-set of a transaction are available before the
transaction starts. Otherwise, the system runs OLLP [35] to first
find out the read- and write-sets. We also assume that each machine
node contains only one data partition, although it is easy to extend
our design to a system, such as H-Store [13], where a node contains
multiple partitions.

3.1 Overview
Observe that a deterministic database system such as Calvin com-
piles transaction requests into batches for better efficiency when
totally ordering transactions. This gives us an opportunity to under-
stand workloads in the near future. Based on this observation, we
redesign a deterministic database system such that it can leverage
the insights to future workloads to process transactions, partition
data, and migrate data more efficiently and smoothly. We name this
new architecture Hermes.

Hermes differs from Calvin in some key aspects. Schedulers. In
the scheduler of each node (see Figure 4), we replace the transac-
tion routing algorithm with the prescient transaction routing whose
details will be given in Section 3.2. The original algorithm routes a
transaction to all nodes storing records to be written by the trans-
action. In Hermes, a transaction is always routed to only one node
(which we call themaster node). Furthermore, instead of processing
each transaction request one by one, the scheduler takes a batch
of requests as input, analyzes the batch, and determines the rout-
ing schedule for all the requests in the batch at once. Note that,
as long as the routing algorithm is deterministic, each scheduler
can perform this action on its own without any additional network
communication.2 Executors. We also modified the transaction ex-
ecutor of each node such that a distributed transaction migrates
the remote records it reads and writes to the master node. So, data
migrations happen on the fly with the remote reads and writes
performed by a distributed transaction on the master node. This
technique is known as data fusion and has been used by existing
look-present schemes [7, 18]. With the help of the prescient trans-
action routing, Hermes generalizes the idea of fusing the records of
a single transaction to fusing the records of multiple transactions
in a batch, avoiding the drawback of ping-pong data migration
in the look-present approaches. Fusion table. Hermes also has a
major system component called fusion table, which does not exist
in Figure 4. In each scheduler, the prescient transaction routing
defines fine-grained partitioning of data. Hermes employs a global
fusion table, denoted as F, to book-keep the partitioning. This table
consists of multiple (record key, partition ID) pairs and needs to be
accessed by all schedulers in the system. In order to ensure speedy
accessing and to avoid additional network communication, Hermes
replicates this table across all schedulers running on different nodes
and leverages the determinism provided by a deterministic database
system to ensure consistency between the replicas. Since the pre-
scient transaction routing run by each scheduler is a deterministic
algorithm, each replica always yields the same result given the same

2See Section 2 for how a scheduler routes a transaction request and how the Executor
on the same node runs the transaction deterministically.

totally ordered transaction requests. Furthermore, Hermes puts the
fusion table in the main memory of each node. To prevent the fu-
sion table from becoming arbitrarily large, Hermes limits the size
of the fusion table by using a deterministic replacement strategy
to be described in Section 4.1 and tracking only the partitioning of
hot records. Hermes uses a naive, static range partitioning to store
cold data. Such a design has implications to system performance
in the presence of dynamic machine provisioning. We will discuss
this in Section 3.3.

3.2 The Prescient Transaction Routing
Given that the transaction processing is deterministic to the to-
tal transaction ordering and that data are migrated alongside dis-
tributed transactions, a transaction routing algorithm in Hermes
can control not only the machine loads but also data partitioning
and live migration. We propose the prescient transaction routing
algorithm that looks into the read- and write-sets of transactions in
a batch to 1) minimize (the cost of) distributed transactions while si-
multaneously balancing machine loads, and 2) avoid the ping-pong
data migration problem shown in Figure 3.

3.2.1 Objective. Given a batch of transaction requests B = {𝑇𝑖 }𝑏𝑖=1,
where 𝑏 is the batch size and 𝑇𝑖 is a transaction request, and the
current data partitioning P0 = {𝑃𝑖 }𝑛𝑖=1, where 𝑛 is the number of
machines in the system and 𝑃𝑖 is a data partition owned by a node,
we formally define the goal of the prescient transaction routing as

argminB′,1≤𝑥1, · · · ,𝑥𝑏 ≤𝑛
∑𝑏
𝑖=1 𝑟 (𝑥𝑖 ;𝑇𝑖 ∈ B′, P𝑖−1),

subject to 𝑙 (𝑃) ≤ 𝜃,∀𝑃 ∈ P𝑏 ,
(1)

where B′ is a permuted batch where transaction requests are re-
ordered, 𝑥𝑖 is the route (destination machine ID) of the transaction
request 𝑇𝑖 in B′, P𝑖−1 is the updated data partitioning after exe-
cuting transactions 𝑇1, · · · ,𝑇𝑖−1 with on-the-fly data migrations,
𝑟 (𝑥𝑖 ;𝑇𝑖 , P𝑖−1) is the number of remote records in the read-set of the
transaction request 𝑇𝑖 given the latest data partitioning P𝑖−1 if we
route𝑇𝑖 to the node𝑥𝑖 , and 𝑙 (𝑃) is the load of a partition 𝑃 in the final
partitioning P𝑏 after all transactions in B’ are routed. For simplicity,
we define 𝑙 (𝑃) as the number of transactions routed to partition
𝑃 in P𝑏 . Note that minimizing

∑𝑏
𝑖=1 𝑟 (𝑥𝑖 ;𝑇𝑖 , P𝑖−1) minimizes the

the number of both remote reads in distributed transactions and
data migrations. The constraints in Eq. (1) ensure that the load of
every partition does not exceed a given threshold 𝜃 . We define the
threshold as

𝜃 =

⌈
𝑏

𝑛
× (1 + 𝛼)

⌉
,

where 𝛼 ≥ 0 is a configurable parameter that denotes the tolerance
to imbalanced loads. We use a ceiling function to ensure that the
trivial routing plan that evenly distributes requests to machines is
always a feasible solution to Eq. (1).

3.2.2 Algorithm. The solutions𝑥1, · · · , 𝑥𝑏 to Eq. (1) depend on each
other. If we considered all possible transaction ordering in B and all
possible routes, there will be 𝑏!×𝑛𝑏 plans to evaluate. For a system
with 𝑛 = 20 nodes and a batch of 𝑏 = 20 transactions, the scheduler
has to evaluate 1026 plans, which is unlikely (if not impossible) to

Algorithm 1: The Prescient Transaction Routing

Input: B = {𝑇𝑖 }𝑏𝑖=1, P0 = {𝑃𝑖 }
𝑛
𝑖=1 described by the fusion table

F and static range config, and 𝛼
Output: B′ and 𝑥1, · · · , 𝑥𝑏

1 begin
2 B′ ← ∅; 𝑙𝑖 ← 0,∀𝑖 = 1, · · · , 𝑛;
3 // Step 1: Orders and routes requests by minimizing

remote reads.
4 for 𝑖 ← 1 to 𝑏 do
5 find transaction 𝑇𝑖 , 𝑇𝑖 ∈ B and 𝑇𝑖 ∉ B′, and 𝑥𝑖 such

that 𝑟 (𝑥𝑖 ;𝑇𝑖 , P𝑖−1) is minimal;
6 B′ ← B′ ∪ {𝑇𝑖 };
7 add entries with read/write-sets of 𝑇𝑖 as keys and 𝑥𝑖 as

value to F to get P𝑖 ;
8 𝑙𝑥𝑖 ← 𝑙𝑥𝑖 + 1;
9 end

10 // Step 2: Finds overloaded and underloaded nodes
11 𝜃 ←

⌈
𝑏
𝑛 × (1 + 𝛼)

⌉
;

12 𝑂 ← {𝑖 : 𝑙𝑖 > 𝜃 };𝑈 ← {𝑖 : 𝑙𝑖 < 𝜃 };
13 // Step 3: Reroutes requests to balance loads
14 𝛿 ← 1;
15 while |𝑂 | > 0 do
16 // Iterates through B′ backward
17 for 𝑖 ← 𝑏 to 1 do
18 if 𝑥𝑖 ∈ 𝑂 then
19 𝑥 ′ ← findNewRoute(𝑇𝑖 ,𝑈 , P𝑏 , 𝛿);
20 if 𝑥 ′ ≠ 𝑛𝑢𝑙𝑙 then
21 𝑙𝑥𝑖 ← 𝑙𝑥𝑖 − 1; 𝑙𝑥 ′ ← 𝑙𝑥 ′ + 1;
22 update 𝑂 and𝑈 ;
23 update P𝑏 by changing the values of

entries in F having read/write-sets of 𝑇𝑖 as
keys from 𝑥𝑖 to 𝑥 ′;

24 𝑥𝑖 ← 𝑥 ′;
25 end
26 end
27 if |𝑂 | = 0 then break
28 𝛿 ← 𝛿 + 1;
29 end
30 end
31 return B′ and 𝑥1, · · · , 𝑥𝑏
32 end

be done in realtime. Hermes employs a greedy algorithm shown in
Algorithm 1 to efficiently find an approximate solution to Eq. (1).

The algorithm consists of three major steps. In the first step
(lines 4-9), the scheduler reorders and routes transaction requests
by minimizing the number of remote reads. It greedily selects the
first reordered transaction𝑇1 and its route 𝑥1 such that 𝑟 (𝑥1;𝑇1, P0)
is minimal, and then repeats this process until all transactions
are reordered and routed. We consider only the remote reads here
because each write will be local and result in a data migration. After
the 𝑇𝑖 and 𝑥𝑖 are found in an iteration, the scheduler updates the
fusion table F by adding records with read- and write-sets of 𝑇𝑖 as
keys and 𝑥𝑖 as value. This updates P𝑖 , which will affect the ordering
and routing of subsequent transaction requests in later iterations. In
the second step (lines 11-12), the scheduler finds out the overloaded
partitions 𝑂 and underloaded partitions𝑈 by counting the number

of assigned transactions in each partition. In the last step (lines 14-
30), it tries to move some transaction requests from the overloaded
partitions to underloaded ones in order to balance the loads of
different machines. When it decides which node a request𝑇𝑖 should
be routed to, it calls a subroutine findNewRoute(𝑇𝑖 ,𝑈 , P𝑏 , 𝛿). This
function returns another partition 𝑥 ′ ∈ 𝑈 for𝑇𝑖 that will not results
in more additional “remote edges” than 𝛿 . The remote edges include
1) the remote reads of 𝑇𝑖 if 𝑇𝑖 is routed to 𝑥 ′ and 2) the reads to 𝑇𝑖 ’s
write-set performed by subsequently ordered transactions inB′ that
are not routed to 𝑥 ′. At line 17, the scheduler iterates the requests
in B′ backward so that it tends to move later requests which affects
less subsequent transactions. If there are still overloaded partitions
after moving all eligible transactions, it will relax 𝛿 and try to move
transactions to balance the loads again. This process repeats until
all the constraints in Eq. (1) are satisfied.

Note that in step 1, the scheduler tends to route a transaction to
the partition that contains most data in the read-set of the transac-
tion. Therefore, the lines 7 and 23 and can be simplified to updating
F using only the write-set of 𝑇𝑖 as keys. After receiving B′ and
the routes produced by the scheduler, the executer (Figure 4(c))
can migrate only the data written by transactions. This allows a
data record to be concurrently read (and shared locked using the
conservative ordered locking protocol) by multiple, non-conflicting
transactions on different nodes without contending for its owner-
ship.

3.2.3 An Example. We use an example to demonstrate how exactly
the scheduler routes a batch of requests. Suppose that there are
three partitions in three server nodes, and tuple {A, B} are stored in
node 1 and tuple {C, D, E} are stored in node 2. The scheduler on
each node then receives a batch of requests shown in Figure 5(a)
where each row represents a transaction request with its read-set
and write-set. We assume that parameter 𝛼 = 0 so that threshold
𝜃 = 2. After the scheduler performs the first step, ordering and
routing routes based on the counts of remote reads, it generates the
plan shown in Figure 5(b). We can see that transaction 1 (𝑇1) and 3
(𝑇3) are reordered to the end of the sequence because this sequence
generates the least number of remote reads, which is only one in the
case. If we fixed the order, there might be the ping-pong problem
in the original sequence where transaction 1, 2 and 3 may migrate
tuple C back and forth. This shows that reordering transactions
can help Hermes avoid the ping-pong issue.

In the second step, the scheduler identifies node 2 as an over-
loaded node since there are 4 requests routed to it. In order to
reduce the load of node 2, it tries to reassign transaction requests
on it. According to the algorithm, it will reassign an request only if
the assignment adds no more number of remote edges than 𝛿 = 1.
Moving transaction 6 (𝑇6) to node 3 only creates one more remote
edge, and thus the scheduler reassigns 𝑇6 to node 3 as shown in
Figure 5(c). However, node 2 still has higher load than the threshold
so that the scheduler tries to move transaction 5 (𝑇5) as well. At
this time, it finds that moving𝑇5 will not create additional network
transmission because 𝑇5 will migrate tuple C and 𝑇6 can reuse the
same tuple. This shows that this algorithm can balance the loads by
reassigning a group of transaction requests with temporal locality.
As a result, it moves two transaction requests but only adds one
more data migration as Figure 5(d) demonstrates.

T1: R:{A, B, C}, W: {C}

T2: R:{C, D, E}, W: {C}

T3: R:{A, B, C}, W: {C}

T4: R:{D}, W: {D}

T5: R:{C}, W: {C}

T6: R:{C}, W: {C}
Node 1

C

S
e

ri
a

l
O

rd
e

r
Node 2 Node 3

T5

T1

T3

T4

T6

T2

Node 1

C

S
e

ri
a

l
O

rd
e

r

Node 2 Node 3

T5

T1

T3

T4

T6

T2

C

Node 1

C

S
e

ri
a

l
O

rd
e

r

Node 2 Node 3

T5

T1

T3

T4

T6

T2

C

(a) a batch of requests (b) the plan after the first step (c) the plan after the first reassignment (d) the final plan

Figure 5: An example of routing a batch of requests. The dash lines between nodes represent network transmissions.

3.2.4 Cost Analysis. Now we analyze the computational cost of
Algorithm 1. There are three main steps in the algorithm, and
the most expensive step is the last step, which has 𝑂 (𝑎2𝑏2𝑛) time
complexity, where 𝑎 is the maximum size of a read-set among all
the requests in B. This is much faster than the brute-force search
of 𝑂 (𝑏!𝑛𝑏) time complexity. In our experiments, we observe that
Algorithm 1 takes only a few milliseconds on average for each
transaction under a complex workload with 𝑛 = 20 nodes and 𝑏 =

1000 requests per batch, which only accounts for 4% of the overall
latency. We treat this as a reasonable overhead since some previous
work [20, 37] also trade throughput gain with a few milliseconds
delay on OLTP workloads. Furthermore, Hermes performs this
algorithm in the scheduler so that this latency is not counted into
the contention footprint of transaction execution. The prescient
transaction routing has little impact on the system performance.

3.3 Dynamic Machine Provisioning
So far, we assume that the number of machines in a system is
fixed. In practice, one may add or remove machines corresponding
to the workload changes, but this makes the dynamic data (re-
)partitioning even more challenging. Next, we show that Hermes
readily supports dynamic machine provisioning.

Adding or removing a node involves moving a data partition 𝑃

on a node to another, where the partition contains both hot and cold
records. Existing data (re-)partitioning algorithms [31, 33] usually
assign the entire 𝑃 to a new node. However, this makes it hard for
a live migration technique [8–10, 19] to migrate the partition in a
per-transparent manner because the migration process will touch
hot data that are being accessed by current normal transactions.
Hermes migrates 𝑃 using a hybrid approach, where the (hot) data
in the fusion table are migrated using data-fusion. This can be
easily done by including the added node/partition or excluding the
removed node in the fusion table. On the other hand, the (cold) data
not in the fusion table, denoted as 𝑃−, are migrated using existing
coarse-grained data (re-)partitioning and live migration algorithms.

To migrate the hot data in 𝑃 , the schedulers (Figure 4(b)) should
be aware of the change of the physical layout. Hermes notifies the
schedulers of such changes by issuing a special transaction that will
be totally ordered so that the schedulers will include the added node
or exclude the removed node in a consistent manner. To migrate
the cold data 𝑃−, Hermes uses the asynchronous migration tech-
nique proposed by Squall [9]. The basic idea is to break the 𝑃− into
multiple chunks and then migrate each chunk using a dedicated
migration transaction. With the help of the fusion table, we can

significantly decrease the chance that the transactions for migrat-
ing chunks conflict with normal transactions,3 making the system
performance more resilient to changes of machine provisioning.

4 PRACTICAL CONSIDERATIONS
In this section, we discuss some practical considerations of the
Hermes design.

4.1 Limiting the Size of the Fusion Table
One practical issue is how to limit the number of key-value pairs
stored in the fusion table because the fusion table may occupy
considerable memory space. Once the number exceeds the limit,
it has to evict a key-value pair based on a replacement strategy.
The strategy can be any deterministic replacement strategy such as
First-In-First-Out (FIFO) or Least Recently-Used (LRU). In addition
to the pair, the system has to migrate the corresponding record
back to its original partition. To implement this strategy, we first
make the scheduler check the size of the fusion table when it routes
a transaction request. If the size exceeds the defined threshold, it
will evict some keys out from the fusion table as an evicted key-set.
Then, the scheduler will add the evicted key-set to the write-set
of the transaction, which has to migrate the evicted records back
to their original partitions. Note that once the write-set of this
transaction is recorded in the command log, the transaction can
return to the client before it migrates the records back. This means
that the migration will not create any additional delay to the client
who issues the transaction.

We believe that limiting the size of the fusion table is reasonable
for many OLTP workloads since a large number of OLTP workloads
only has small portions of hot data. This was shown in a study [38]
in which 99.94% of workloads inWikipedia only accessed 5% of data
in the whole database. Also, our experiments described in Section
5 show that Hermes still outperforms previous work under Google
workloads even if we limit the size of the fusion table to under 2.5%
of the database size.

4.2 Handling Transaction Aborts
Since a deterministic database system has eliminated all types of
non-deterministic events that may change the results of execution,
random aborts caused by the system will not happen in Hermes.
We only need to consider the aborts due to the transaction logic as

3A chunk-migration transaction may still conflict with a normal user transaction if
the user transaction accesses the cold data in the migrating chunk, but this is rare.

defined by users. For example, a user might request to abort if the
stock level of an item is less than the amount it needs. This kind of
abort may happen even in stored procedures. When a transaction
decides to abort, Hermes follows the traditional UNDO process to
roll back the modification of the transaction. However, the aborted
transaction still has to migrate and push records according to the
original plan generated by the prescient routing so that the follow-
ing transactions will find all the records where they expect.

4.3 Handing System Failures
Hermes may encounter unexpected failures such as power failures
or software errors. In order to handle such failures, we follow the
strategy used by Calvin [35]. Each node must maintain UNDO logs
for its storage and command logs [21] for the transaction requests.
Each node may also periodically create consistent checkpoints [29]
to reduce the time for recovery. When a node fails, a replica of the
node can immediately take over. After we restart the failed node, it
first undoes the modifications until it reaches the state of the latest
consistent checkpoint. Then, it uses the command logs to replay
the prescient routing and data fusion for executing the transactions
so that it can recover the system to the latest state. If the node
is participating in migrating cold data when it fails, the system
can also recover the migration states by replaying the command
log since the process of cold migrations is deterministic and the
requests of transactions for cold migrations are also logged. Note
that it may also need to synchronize its command log with another
machine to update the log.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of Hermes and compare
it with previous work.

5.1 Systems & Environment
We implemented Hermes on an open source deterministic database
system written in Java whose architecture are similar to Calvin
[35]. We ran the following experiments on a cluster consisting of 31
commodity machines: 20 machines as server nodes, 10 machines as
client nodes, and 1 dedicated machine as the leader in the Zab total-
ordering protocol [27]. Each machine in the cluster was equipped
with an Intel Core i5-4460 3.2 GHz CPU, 24 GB RAM, and a 240 GB
SSD. We connected the machines with a 10Gbps switch and ran
each of the following experiments after warming up the system for
120 seconds so that it produces a stable throughput.

5.2 Dynamic Data Re-Partitioning under
Complex Workloads

In this section, we evaluate the performance of Hermes and the base-
lines given highly complicated, fast changing, and unpredictable
workloads, as shown in Figure 1.

5.2.1 Baselines. We implemented the following baselines.
Calvin (vanilla). We introduced Calvin [35] in Section 2 and

implemented it as a baseline. We also used it as the base system
when implementing other previous work. Calvin executes transac-
tions in a multi-master scheme where a transaction is routed to all
the machines (called masters) that have records to be written by

the transaction. This scheme eliminates the need of writing records
across network but takes more resources to execute transactions
than a single-master scheme.

G-Store+ (look-present). G-Store [7] is a look-present approach
for NoSQL DBMSs. It dynamically groups records and provides
atomic access to a group for clients. However, G-Store requires the
clients to define which keys to be grouped and when to disband
the group. Since Calvin already knows the read-set and write-set of
each transaction, we adapted G-Store to Calvin by trivially grouping
the keys in the read-set and write-set for each individual transac-
tion and disbanding the group immediately after the transaction
commits. We also altered the execution model of Calvin for G-Store
to a single-master scheme where a transaction is routed to only one
machine (called master) that has the majority of records accessed by
the transaction, thus the master must pull the records not located
on its partition and write them back to their original partitions.

LEAP (look-present). LEAP [18] is another look-present ap-
proach that not only groups keys to a singlemaster but alsomigrates
data records to the master node for each individual transaction so
that it eliminates the need of writing records back to their partitions
and benefits from temporal locality. However, it does not consider
load balancing and ping-pong problems.

T-Part (transaction-routing-only). T-Part [39] is a transac-
tion processing engine designed for deterministic database systems,
which executes transactions in a single-master scheme like G-Store.
It optimizes transaction routing for minimizing the cost of dis-
tributed transactions while balancing loads. In addition, it proposes
the forward-pushing technique that allows a transaction to push
its writes to later transactions in the same batch of transactions
in order to reduce the synchronization cost, which also eliminates
the need of writing records back within the batch. However, since
T-Part does not migrate data, the records transferred between trans-
actions must be written back to their original partitions once there
is no later transaction that needs the records in the same batch.

Clay (look-back). Clay [31] is a generator of data re-partition
plans for partitioned databases. Claymonitorsworkloads and breaks
down a database into small pieces (called clumps) according to the
hotness and co-access frequency of data4. It then generates plans
to migrate those dynamic blocks in order to balance machine loads.
Note that, unlike LEAP, which migrates records every time that
a master reads a record from another partition for a transaction,
Clay migrates records only when it detects overloaded machines
and starts a dedicated migration phase, which may be more heavy-
weight than the migration scheme used by LEAP and Hermes. As
in the Clay paper, we pair up Clay with Squall [9], a live-migration
technique, to move data according to the plans at runtime.

Schism (off-line, look-back). Schism [6] is an off-line data par-
titioning scheme. It models a database as a graph, where the nodes
represent the records and the edges represent co-access frequency
of the endpoints in transactions. It then partitions the graph using
a graph partitioning algorithm. Schism partitions data from scratch
and does not support incremental data re-partitioning. Periodically
applying Schism to a system with changing workloads will result
in a large number of data migrations. Therefore, we only used it to
4In our implementation, we generate a clump by using data ranges instead of keys
because generating key-based, fine-grained clumps takes too much time. The size of
the range depends on workloads.

10 20 30 40 50 60 70
Emulation Time (Hours)

200

300

400

500

600

700

Th
ro

ug
hp

ut
(K

 tx
s/

15
 se

cs
)

Calvin Clay Schism 1 Schism 2 Hermes

10 20 30 40 50 60 70
Emulation Time (Hours)

200

300

400

500

600

700

Th
ro

ug
hp

ut
(K

 tx
s/

15
 se

cs
)

Calvin G-Store T-Part LEAP Hermes

(a) Hermes vs. Look-back Approaches (b) Hermes vs. On-line Approaches

Figure 6: The performance of Hermes and the baselines under the complex Google workloads.

indicate the “optimal” data partitioning at a particular time within
an experiment period.

5.2.2 Google Workloads. Based on the workload trace of machines
in Google’s data centers [28], we created a complex OLTP workload
whose characteristics are shown in Figure 1. We defined transac-
tions and databases by following the Yahoo! Cloud System Bench-
mark (YCSB) while letting the final workload of each machine look
similar to that of Google. Each database has one table, and each
record in the table is 1KB in size and has 10 fields. We populated
200M records for the following experiments. The metadata, the
indices and the data table of the database totally occupies 360GB
disk space, which is hard to be loaded into the memory of a single
commodity machine. All approaches, except Schism, used range par-
titions (where each range has 10M records) as the initial partitions,
where each machine has a 18GB database.

Each transaction accesses 2 records in the database. There are
two types of transactions: the first type are read-only transactions,
where each transaction reads two records; the second type are read-
write transactions, where each transaction performs read, modify,
and write on two records. Both types of transactions are further di-
vided into the local and distributed transactions. A local transaction
first selects a partition following a time-varying distribution pro-
portional to the machine loads logged by Google and then accesses
two records following the Zipfian distribution in the partition. This
allows the local transactions to reflect the workload spike, skew-
ness, and dynamics of Google’s machines. A distributed transaction
accesses a record using the same access pattern of a local transac-
tion and another record selected from a global, two-sided Zipfian
distribution defined on all keys in the whole database. The global
distribution changes its peak over time repeatedly from the first
to the last record in order to simulate the behavior of active users
around the world in 24 hours. The changing global hot records, to-
gether with complex per-machineworkloads, make the optimal data
partitioning opaque and dynamic. We set the ratio of distributed
transactions and read-write transactions both to 50%.

We replayed a 3-day log consisting of 20 machines of Google’s
cluster. However, since it is too time consuming to run each emula-
tion for 3 days, we downscaled the emulation from 3 days to 2160
seconds by sampling every two minutes. Each emulating machine
has 24GB RAM, where 6GB is allocated for buffer pool and the rest
is used by the Java VM (to store objects such as the fusion table in
Hermes). For more details, please see the supplementary file [3].

5.2.3 Overall Performance. Figures 6(a)(b) show how the system
throughput of Hermes and the baselines changes over time under
the complex Google workloads. In Figure 6(a), the state-of-the-art
“look-back” data re-partitioning approach, Clay, does not signifi-
cantly outperform Calvin with only static range partitions. This
is mainly due to that 1) there are many episodic events which are
not predictable from the past, and 2) the dedicated data-migration
phase incurs delays so Clay fails to update data partitions in time.
To see the optimistic performance of the look-back scheme, we
study the performance of Schism. We first randomly select two
periods of 12 hours long, run Schism offline given the workloads in
these two periods to determine their respective “optimal” data par-
titioning, and then equip Calvin with the optimal data partitioning
(marked as Schism 1 and Schism 2 for the two periods, respectively).
In Figure 6(a), we can see that Schism 1 and 2 work well during
the selected periods (40th to 52nd hours for Schism 1, and 10th to
22nd hours for Schism 2), but none of them fits the workloads in
the long term. Furthermore, if Schism is run periodically, we can
see from the difference between Schism 1 and 2 that there will be
a high data migration cost when the system updates the “optimal”
data partitioning calculated offline. The look-back approaches does
not work well with the complex Google workloads.

On the other hand, as Figure 6(b) shows, the existing “look-
present” approaches, including G-Store and LEAP, improve the
throughput by 2% and 50% respectively because they take advan-
tage of temporal locality. G-Store needs to put the records accessed
by a distributed transaction back to their owner data partitions
after the transaction terminates, thus has higher costs. LEAP leaves
the records at where they are accessed (by a distributed transac-
tion) so it improves the throughput better. However, Hermes still
outperforms LEAP because LEAP does not consider load balancing.
The transaction routing approach, T-Part, also improves the per-
formance by trying to balance loads among machines. In addition,
its forward pushing technique lets a transaction directly send its
records to later transactions that read the records; this eliminates
the need for accessing remote storage, so T-Part can also benefit
from temporal locality. In spite of this strength, Hermes outper-
forms T-Part because the prescient routing algorithm in Hermes
not only routes transactions (which optimizes transaction execu-
tion as in T-Part) but also re-partitions and migrates data on the
fly. In particular, T-Part has to put records back into their original
partitions while Hermes uses data-fusion to avoid this overhead.

Calvin Clay GStore TPart LEAP Hermes0

50

100

La
te

nc
y

(m
illi

se
co

nd
s)

Scheduling
Waiting for Locks

Accessing Local Storage
Waiting for Remote Data

Other Modules

Figure 7: The breakdown of average latency.

10 20 30 40 50 60 70
Emulation Time (Hours)

10

20

30

CP
U

Us
ag

e
(%

)

Calvin
Clay

G-Store
T-Part

LEAP
Hermes

10 20 30 40 50 60 70
Emulation Time (Hours)

3

4

5

6

Ne
tw

or
k

Us
ag

e
Pe

r T
ra

ns
ac

tio
n

(b
yt

es
/s

ec
)

Figure 8: The changing of (a) average CPU usage and (b)
network usage per transaction with the Google workload.

To sum up, Hermes addresses all the issues above and outperforms
all the baselines by 29%~137%.

5.2.4 Latency breakdown. To understand how Hermes improves
performance, we tracked the time spent of each transaction action
by using code injection. Figure 7 shows the latency breakdown of
a transaction in each system. We have three observations. First,
Hermes reduces both the average wait time for remote data and
locks by 30% and 120%, respectively, because the prescient routing
generally yields better data partitions that minimizes distributed
transactions and balances loads. This explains why Hermes gives
the best overall transaction throughput (Figure 6). AlthoughG-Store
and LEAP also reduce the wait time by grouping records on demand,
both systems have no ability to balance the loads among machines.
LEAP has slightly better performance since it migrates records such
that transactions can benefit from temporal locality and hot nodes
can shift off a little load. Second, while T-Part does not reduce wait
time greatly, it has a better performance than most of the baselines.
This is because T-Part has the ability to balance loads using trans-
action routing so that it utilizes the CPU resource better than other
baselines. Third, the latency of scheduling a transaction in Hermes
is about 2 milliseconds, which is 4% of the overall latency. The la-
tency represents the time of analyzing transactions, performing the
prescient routing and scheduling an Executor thread. This justifies
our claim in Section 3.2 that the latency is almost negligible.

(5, 5) (10, 5) (10, 10) (20, 5) (20, 10) (20, 20)
(Mean, Std) of The Number of Records per Transaction

0

50

100

Im
pr

ov
em

en
t

 in
 T

hr
ou

gh
pu

t(%
)

Clay
G-Store

LEAP
T-Part

Hermes

Figure 9: Impact of transaction length. Std stands for standard
deviation.

101 102 103

Batch Size

36

38

Th
ro

ug
hp

ut
(K

 tx
s/

se
cs

)

Figure 10: The trade-off between the batch size and the per-
formance under the Google workload.

5.2.5 Resource Utilization. We also recorded the CPU and network
usage.5 Figure 8 illustrates the average CPU and network usage
consumed by each transaction among the nodes. There are some
notable observations. First, the CPU usage of T-Part is slightly
higher than the usage of LEAP. This, again, shows that T-Part
is better at balancing loads among machines. However, since T-
Part has to put data records back into their original partitions, its
improvement is limited by the communication costs. Second, the
network usage of Clay sometimes gets higher than that of other
baselines. This is because Clay performs dedicated data migrations
in order to meet its new data partitions. Finally, Hermes has a better
ability to balance the loads among machines so that it can utilize
more resources than the other baselines. In addition, the network
usage of Hermes is almost the same with (and sometimes even
lower than) that of other baselines. This shows that Hermes not
only balances loads but also reduces the number of distributed
transactions.

5.2.6 Impact of Transaction Length. Next, we conducted more ex-
periments to evaluate the impact of transaction length with the
Google workload. In order to create a workload with the trans-
actions having diverse length, we made the number of records
accessed by each transaction randomly sampled from a normal
distribution with different means and standard deviations. Figure
9 shows the improvement in throughput over Calvin with six dif-
ferent settings. We can see that Hermes consistently improves per-
formance given different combinations of the means and standard
deviations. Moreover, it works even better under the workloads
with higher means. This is because longer transactions implies
longer blocking time for conflicting transactions, which enlarges
the contention footprint. Therefore, the benefits of reducing syn-
chronization across machines and balancing loads become more
obvious.

5It is normal for a machine to have a low CPU usage under the Complex Google
workload because 50% of the transactions are distributed and there is a high chance of
network stall.

Normal 50% 80% 90%0

2000

Th
ro

ug
hp

ut
(K

 tx
s/

m
in

)

Calvin
Clay

G-Store
T-Part

LEAP
Hermes

Figure 11: The average throughput of Hermes and baselines
on the TPC-C benchmark with different degrees of hot-spot
concentration.

5.2.7 Sensitivity Analysis of the Batch Size. In order to understand
how the prescient routing affects the performance of Hermes, we
ran one more experiment by varying the number of batched re-
quests (called batch size) in Hermes with the Google workload as
shown in Figure 10. While increasing the batch size can increase the
throughput to a certain degree (by allowing the prescient routing
to obtain a better routing plan), the performance drops when the
batch size becomes too large. This is because a large batch increases
the CPU utilization of the prescient routing algorithm, which slows
down the entire system. Therefore, we can not arbitrarily increase
the batch size, but we can also see how significantly the prescient
routing improves the performance when we choose a good batch
size.

5.3 Dynamic Data Re-Partitioning under
Simpler Workloads

Next, we study if Hermes is applicable to other, simpler workloads.

5.3.1 The TPC-C Benchmark. We first run Hermes and the base-
lines on the TPC-C benchmark [24], which has a complicated
schema and transactions but well-partitioned data. The benchmark
simulates a warehouse management system, which consists of nine
tables and five types of transactions. We use only the New-Order
and Payment transactions in these experiments since they con-
tribute 88% of the workload and form its main characteristics. We
use 20 machines and load 20 warehouses for each machine, and
thus there are 400 warehouses in the database. In order to create a
hot spot in the workload, we make 4000 clients send requests to the
system in a close loop and modify the workload so that a significant
proportion of the requests concentrate on the warehouses in the
first node [9, 31, 33]. We test three degrees of concentration, namely
50%, 80%, and 90%, and the ordinary workload in our experiments.

Figure 11 shows the average throughput of Hermes and the
baselines. When facing the ordinary TPC-C workload (marked as
Normal), all approaches give similar throughput because the data-
base is already well partitioned (simply based on the warehouse)
and the loads are balanced. Hermes gives slightly lower throughput
due to the overhead of batch processing and analysis. Nevertheless,
its performance is still comparable to that of other baselines. As
the transaction requests concentrate on the first node (lowering
the quality of warehouse-based data partitioning), all approaches
give degraded throughput. However, Hermes and Clay starts to
outperform other baselines because both of them are able to bal-
ance the loads among machines by migrating hot warehouses out
from the first node. This verifies that Hermes is capable of data

0 200 400 600 800 1000 1200
Time (seconds)

0

100

200

Th
ro

ug
hp

ut
(K

 tx
s/

10
 se

cs
)

Calvin
Clay

G-Store
T-Part

LEAP
Hermes

Figure 12: The throughput of Hermes and baselines under
the multi-tenant workload with a changing hot spot. The ver-
tical dash lines indicate the time where the hot spot changes
from one node to another.

re-partitioning even when transactions and data schema are com-
plicated. Note that Clay yields slightly higher throughput than
Hermes in this case because the modified TPC-C workloads with
hot spots still have access patterns that Clay can exploit by looking
back. Specifically, Hermes may distribute the records of a ware-
house on multiple partitions due to the load balancing concern in
the prescient routing, but the ideal solution is to put those records
together. Clay is able to capture this pattern because it collects a
longer workload trace (than a mere batch) to determine the optimal
partitioning. Note that Clay needs a dedicated migration phase
to move the records, which may take long time to update data
partitioning and cause negative impact on the throughput. This
drawback does not affect the performance here because the TPC-C
workloads are static over time.

5.3.2 The Multi-tenant Workload with a Changing Hot Spot. Next,
we test Hermes under a multi-tenant workload that is dynamic
over time but has a simpler schema and no distributed transac-
tion. In this workload, each server has 4 non-overlapping tenant
databases, each of which contains 2.5M YCSB records, and each
transaction performs the read, modify, and then write operations
on two records randomly selected from a single tenant following
a Zipfian distribution (with the skewness parameter 𝜃 = 0.9). We
create 4 servers and 800 client threads submitting requests to the
servers in a closed loop. As in the modified TPC-C workloads, 90%
of the workloads concentrate on the tenants of one of the server
nodes. However, we change the concentration target from one node
to another every 500 seconds to simulate that different tenants serve
different users around the world and the users become active at
different time.

Figure 12 shows how the throughput of Hermes and the base-
lines change over time under this workload. Since Calvin does
not balance loads dynamically, it perform the worst. T-Part gives
only slightly higher throughput because it cannot migrate data and
its load-balancing ability is limited in the absence of distributed
transactions. In contrast, LEAP can smoothly migrate records, but
it cannot not balance loads. Clay is the only baseline that gives
comparable performance against Hermes, which demonstrates its
effectiveness of load balancing and data migration by identifying
the hot records and its co-accessed records from system statistics.
However, Clay needs time to collect the statistics and generate a
migration plan, and as such, it reacts to workload changes more
slowly thanHermes. Furthermore, the datamigrations block normal

Perfect Hash-based Skewed
20

30

Th
ro

ug
hp

ut
(K

 tx
s/

se
c)

Calvin
Clay

G-Store
T-Part

LEAP
Hermes

Figure 13: The impact of initial partitioning. Please see Fig-
ure 11 for labels.

user transactions. These lead to the drops of throughput right after
the hot spot changes.6 Hermes gives relatively stable performance
because it migrates data on the fly with distributed transactions,
whichminimizes the data migration costs. Moreover, it adapts to the
changing workload quickly and starts to improve the performance
earlier than Clay after the hot-spot changes.

5.3.3 Impact of Initial Partitioning. Following Section 5.3.2, we
evaluate if Hermes is robust to the initial data partitioning. We use
three different initial partitioning plans to load the data into the
database: 1) perfect range partitioning, 2) hash-based, which decides
the partition of a key using a hash function, and 3) skewed range
partitioning, which is also a range partitioning but puts the data
of first 7 tenants (about 43% of data in the database) in a single
node. Note that the hash-based partitioning creates distributed
transactions.

It is not surprising to see that all approaches give satisfactory
performance with the perfect initial data partitions, as shown in
Figure 13. With the hash-based initial data partitions, LEAP and
Hermes outperform the other baselines. However, LEAP does not
perform well with the skewed initial data partitions. This is because
LEAP merges records according to co-access patterns, but the co-
accessed records in the skewed initial partitioning do not separate
across different partitions. So, LEAP keeps the workload skewed.
In contrast, Clay performs best with the skewed initial partitioning
but does not work well with the hash-based initial data partitions.
We observe that Clay cannot find a better data partitioning plan in
the hash-based scenario because all nodes are equally loaded in the
long term and thus migrating a tenant to another node relieves a
temporal hot spot but creates another. Among all the approaches,
Hermes consistently gives good performance. This shows that the
data re-partitioning and migration abilities of Hermes is robust to
the initial data partitioning.

5.4 Dynamic Machine Provisioning
In the following experiments, we evaluate the performance of Her-
mes when the machine provisioning changes, which is common in
a large cluster. Here, we consider a scale-out scenario where a sys-
tem has to dynamically add a machine to a cluster with 3 machine
nodes in order to relieve a hot spot via data migration. We use the
multi-tenants workloads described in Section 5.3.2 with single hot
spot tenant in the first node, which receives 25% of total workloads.

6The performance of Clay is optimistic here because we implement an optimization.
In the multi-tenant workload, any two records in a tenant could be accessed by a
transaction. Thus, Clay has to examine every record in the tenant to generate a “clump”
(i.e., a group of records) to be migrated together, which takes a long time. To speed up
the clump generation, we let Clay examine ranges instead of individual records.

0 250 500 750 1000 1250 1500 1750
Time (seconds)

200

300

400

500

Th
ro

ug
hp

ut
(K

 tx
s/

10
 se

cs
)

Squall
Clay + Squall

Hermes w/o cold (5%)
Hermes w/o cold (10%)

Hermes with cold (5%)

Figure 14: The changing of throughput during the scale-out
scenario. The first solid vertical line indicates the event of
adding a new node, the second solid vertical line indicates
the end of datamigration in Hermes, and the dash and dotted
vertical lines indicate the end of the migration in Squall and
Clay+Squall, respectively.

We consider two baselines that are able to perform dynamic data
migrations. Squall. Squall [9] is a state-of-the-art live migration
mechanism that uses reactive pulling to migrate hot data accessed
by transactions while using background jobs to migrate cold data.
Note that Squall is a migration executor (which decides how to
migrate data) instead of a migration planner (which decides what
data to migrate). We pair up Squall with the planner for migrating
cold data of Hermes. Clay+Squall.We use Clay as the migration
planner and Squall as the migration executor. This baseline also
evaluates the quality of the migration plan generated by Clay.

In the experiments, the system controller sends a notification
of adding a node after the system warms up. Squall immediately
starts a migration with a given migration plan, whereas Clay first
monitors the workloads for 30 seconds, generates a plan, and then
starts a migration using the generated plan. Hermes, on the other
hand, not only starts to migrate cold data but also notifies the
scheduler of the change of machine provisioning such that the
prescient routing will consider routing transactions to the new node.
The chunk size used by the cold migrations in Hermes and Squall
are both 1000 records. The cold data migration plan of Hermes
simply migrates the hot tenant (the first quarter of a range of keys
in the first node) to the new node. Squall uses the same plan. For
ablation study, we also consider two simplified versions of Hermes
that do not perform cold migrations and only migrate hot data
using data fusion. The first one has a fusion table that can cache
5% of the records in the database (marked as w/o Cold (5%)) while
the second one has a larger fusion table that can cache 10% of the
records (marked as w/o Cold (10%)).

Figure 14 shows the results. We can see that the throughput of
all approaches increases after the data migration finishes because
of the increased overall computing power. However, Squall results
in a severe performance drop during the migration period. This is
because Squall migrates some hot records that block later transac-
tions. Clay yields similar performance since it also uses Squall as its
migration executor. Hermes performs much better. The throughput
of Hermes immediately increases as it receives the notification of
adding a new node (the first vertical line in the figure). Because
Hermes uses the prescient routing and migrates data on the fly
with distributed transactions, it is able to quickly relieve a hot spot
by shifting a part of its workload to the new node. Interestingly,
the performance can be improved by Hermes even without cold

migration, demonstrating the benefits of fusing the hot records
only. We can also see that with a large fusion table, which allows
more hot data to be migrated, the throughput goes higher. However,
migrating cold data is still beneficial because it results in higher
throughput in the later stage of the migration period. With cold
data migration, the transactions executing on the new node can
have a higher probability to find cold data in the local storage. It
is important to note that the cold data migrations in Hermes skip
the hot data kept in the fusion table. Therefore, migrating cold data
has no obvious negative impact on the performance in the early
stage of the migration period.

5.5 More Experiments
We also performed more experiments, but we can not discuss the
results here due to space limitation. Please check our supplementary
materials [3] for more results.

6 RELATEDWORK
In this section, we review previous studies related to Hermes.

6.1 Data Fission
Data fission refers to the concept of partitioning the data in a system
into multiple shards in order to increase the system performance. To
support transactions with the ACID guarantees, the system needs to
ensure the consistency between shards. Schism [6] uses a workload
trace to model the database as a graph, whose nodes are records
and edges are frequencies of co-accessing the endpoints. It then
uses Metis [14] to partition the graph such that the number of cross
partition edges are minimized and the distribution of the nodes
are balanced. Sword [26] uses the same idea but also considers
replication for fault-tolerance. Horticulture [23] explores possible
sets of keys for partitioning and evaluates the quality of the sets
using workload traces. JECB [36] goes one step farther by analyzing
SQL statements in transactions. However, a fixed data partitioning
cannot accommodate the changing workloads, and thus E-Store
[33] analyzes the workload trace and periodically migrates hot data
critical to the performance. It first identifies the hot tuples in a given
workload trace and redistributes those tuples to colder partitions.
Clay [31], the successor of E-Store, considers co-access frequencies
between records. Compared with above work, the prescient routing
in Hermes offers an advantage insofar as it does not analyze logs in
the past. Instead, Hermes analyzes the current batch of transactions
to decide the data partitions and can therefore deal with episodic
workload changes happening in the near future. Furthermore, by
integrating data migration with distributed transaction process-
ing, it minimizes the impact of live data migration on transaction
throughput.

6.2 Data Fusion
Data-fusion refers to the concept of dynamically grouping the ini-
tially scattered data for the current need (e.g., executing a trans-
action) in order to increase system performance. Megastore [5]
allows clients to create entity groups and guarantees atomic access
to the data in the entity group. However, a problem suffered by
Megastore is that once a key is assigned to a group, it will not be
allowed to change at runtime. In addition, Megastore requires the

keys in the same group must be continuous in sorted order. Another
work, G-Store [7], allows keys to be dynamically grouped while
providing transactional access to a group without any restriction
on the properties of keys, but it still requires clients to define the
groups. LEAP [18] eliminates the need of intervention from clients
by grouping keys according to the demand of a transaction. It also
migrates data records accessed by the transaction to the master
node, which benefits the later transactions that access the same
records. Nonetheless, LEAP has the drawbacks described in Sec-
tion 1. Hermes avoids these drawbacks by generalizing the idea of
data-fusion to future transactions using the prescient routing.

6.3 Optimizations by Batching Transactions in
Deterministic Database Systems

The idea of batching transactions for optimizations with deter-
ministic execution is not new. Faleiro et al. [12] propose to delay
the evaluation of a transaction and execute a batch of conflict-
ing transactions at once in order to maximize cache locality. An-
other work, Piece-Wise Visibility [11], optimizes the execution of
conflicting transactions by chopping a batch of transactions into
sub-transaction pieces and scheduling the conflicting pieces to the
same core such that only the conflicting parts of the transactions
are blocked. Both of these techniques significantly increase the
degree of concurrency between transactions. However, they target
single-machine scenarios and cannot be straightforwardly adapted
to distributed environments. That is, they would still face the data
partitioning issue that we described in Section 2.1, which motivates
our work. Hermes is orthogonal to these techniques and can be
complementary to each other. In distributed environments, T-Part
[39] minimizes the cost of executing distributed transactions with
its forward-pushing technique, but it still needs to put the data it
writes back to the origins because the data partitions are fixed as
we discussed in Section 5.2.1. Hermes uses data-fusion to eliminate
the need of writing data back. Due to space limitation, we cannot
discuss all related work here. Please see our supplementary file [3]
for more related work.

7 CONCLUSION
We present Hermes, a deterministic database system prototype that
migrates data on the fly with distributed transaction processing. It
uses the prescient transaction routing algorithm to analyze near-
future transactions and jointly optimize load balancing, dynamic
data (re-)partitioning, and live data migration. It also uses the fusion
table to isolate the migration of hot and cold data. We conduct
extensive experiments and the results show that Hermes does not
require predefined high-quality data partitions to achieve high
performance in various situations. It also responds much more
quickly to the workload changes and yields stable performance
in the presence of dynamic hardware provisioning. Hermes opens
up new directions in joint design of transaction processing, data
partitioning, and live migrations.

8 ACKNOWLEDGMENT
This work is supported by the MOST Joint Research Center for AI
Technology and All Vista Healthcare (MOST 110-2634-F-007-013).

REFERENCES
[1] Elasql. http://www.elasql.org.
[2] Faunadb. https://fauna.com/.
[3] Hermes: Supplementary materials. http://www.cs.nthu.edu.tw/~shwu/pubs/

shwu-sigmod-21-sup.pdf.
[4] Voltdb. https://www.voltdb.com/.
[5] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li,

A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly available
storage for interactive services. In CIDR, volume 11, pages 223–234, 2011.

[6] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a workload-driven
approach to database replication and partitioning. Proc. of VLDB Endow., 3(1):48–
57, 2010.

[7] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable data store for transac-
tional multi key access in the cloud. In Proc. of SoCC’10, pages 163–174. ACM,
2010.

[8] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: Lightweight
elasticity in shared storage databases for the cloud using live data migration.
Proc. of VLDB Endow., 4(8):494–505, 2011.

[9] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and A. El Abbadi. Squall:
Fine-grained live reconfiguration for partitioned main memory databases. In
Proc. of SIGMOD’15, pages 299–313, 2015.

[10] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: live migration in
shared nothing databases for elastic cloud platforms. In Proc of SIGMOD’11, pages
301–312, 2011.

[11] J. M. Faleiro, D. J. Abadi, and J. M. Hellerstein. High performance transactions
via early write visibility. Proc. of the VLDB Endow., 10(5), 2017.

[12] J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy evaluation of transactions in
database systems. In Proc. of SIGMOD’14, pages 15–26. ACM, 2014.

[13] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones,
S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-Store: a high-
performance, distributed main memory transaction processing system. Proc. of
VLDB Endow., 1(2):1496–1499, 2008.

[14] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[15] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new way to
implement database replication.

[16] L. Lamport. The part-time parliament. ACM Trans. on Computer Systems (TOCS),
16(2):133–169, 1998.

[17] L. Lamport et al. Paxos made simple. 2001.
[18] Q. Lin, P. Chang, G. Chen, B. C. Ooi, K.-L. Tan, and Z. Wang. Towards a non-2pc

transaction management in distributed database systems. In Proc. of SIGMOD’16,
pages 1659–1674. ACM, 2016.

[19] Y.-S. Lin, S.-K. Pi, M.-K. Liao, C. Tsai, A. Elmore, and S.-H.Wu. Mgcrab: transaction
crabbing for live migration in deterministic database systems. Proc. of VLDB
Endow., 12(5):597–610, 2019.

[20] Y. Lu, X. Yu, and S. Madden. Star: scaling transactions through asymmetric
replication. Proceedings of the VLDB Endowment, 12(11):1316–1329, 2019.

[21] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main
memory oltp recovery. In Proc. of ICDE’14, pages 604–615. IEEE, 2014.

[22] A. Nazaruk and M. Rauchman. Big data in capital markets. In Proc. of SIGMOD’13,
pages 917–918. ACM, 2013.

[23] A. Pavlo, C. Curino, and S. B. Zdonik. Skew-aware automatic database partitioning
in shared-nothing, parallel OLTP systems. In Proc. of SIGMOD’12, pages 61–72,
2012.

[24] T. processing performance council. http://www.tpc.org/tpcc/.
[25] D. Qin, A. D. Brown, and A. Goel. Scalable replay-based replication for fast

databases. Proc. of VLDB Endow., 10(13):2025–2036, 2017.
[26] A. Quamar, K. A. Kumar, and A. Deshpande. SWORD: scalable workload-aware

data placement for transactional workloads. In Proc. of EDBT’13, pages 430–441,
2013.

[27] B. Reed and F. P. Junqueira. A simple totally ordered broadcast protocol. In Proc.
of LADiS’08, page 2. ACM, 2008.

[28] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google cluster-usage traces: format
+ schema. Technical report, Google Inc., Mountain View, CA, USA, Nov. 2011.
Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/cluster-
data.

[29] K. Ren, T. Diamond, D. J. Abadi, and A. Thomson. Low-overhead asynchronous
checkpointing in main-memory database systems. In Proc. of SIGMOD’16, pages
1539–1551. ACM, 2016.

[30] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the advantages and
disadvantages of deterministic database systems. Proc. of VLDB Endow., 7(10):821–
832, 2014.

[31] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo, A. Aboulnaga, and M. Stonebraker.
Clay: fine-grained adaptive partitioning for general database schemas. Proc. of
VLDB Endow., 10(4):445–456, 2016.

[32] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Hel-
land. The end of an architectural era:(it’s time for a complete rewrite). In Proc. of
VLDB Endow., pages 1150–1160, 2007.

[33] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga, A. Pavlo,
and M. Stonebraker. E-store: Fine-grained elastic partitioning for distributed
transaction processing. Proc. of VLDB Endow., 8:245–256, November 2014.

[34] A. Thomson and D. J. Abadi. The case for determinism in database systems. Proc.
of VLDB Endow., 3(1):70–80, 2010.

[35] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: fast
distributed transactions for partitioned database systems. In Proc. of SIGMOD’12,
pages 1–12, 2012.

[36] K. Q. Tran, J. F. Naughton, B. Sundarmurthy, and D. Tsirogiannis. JECB: a join-
extension, code-based approach to OLTP data partitioning. In Proc. of SIGMOD’14,
pages 39–50, 2014.

[37] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions
in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 18–32, 2013.

[38] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload analysis for
decentralized hosting. Elsevier Computer Networks, 53(11):1830–1845, July 2009.
http://www.globule.org/publi/WWADH_comnet2009.html.

[39] S. Wu, T. Feng, M. Liao, S. Pi, and Y. Lin. T-part: Partitioning of transactions
for forward-pushing in deterministic database systems. In Proc. of SIGMOD’16,
pages 1553–1565, 2016.

http://www.cs.nthu.edu.tw/~shwu/pubs/shwu-sigmod-21-sup.pdf
http://www.cs.nthu.edu.tw/~shwu/pubs/shwu-sigmod-21-sup.pdf
https://github.com/google/cluster-data
https://github.com/google/cluster-data
http://www.globule.org/publi/WWADH_comnet2009.html

	Abstract
	1 Introduction
	2 Background
	2.1 Deterministic Database Systems

	3 Hermes
	3.1 Overview
	3.2 The Prescient Transaction Routing
	3.2.1 Objective
	3.2.2 Algorithm
	3.2.3 An Example
	3.2.4 Cost Analysis

	3.3 Dynamic Machine Provisioning

	4 Practical Considerations
	4.1 Limiting the Size of the Fusion Table
	4.2 Handling Transaction Aborts
	4.3 Handing System Failures

	5 Experimental Evaluation
	5.1 Systems & Environment
	5.2 Dynamic Data Re-Partitioning under Complex Workloads
	5.2.1 Baselines
	5.2.2 Google Workloads
	5.2.3 Overall Performance
	5.2.4 Latency breakdown
	5.2.5 Resource Utilization
	5.2.6 Impact of Transaction Length
	5.2.7 Sensitivity Analysis of the Batch Size

	5.3 Dynamic Data Re-Partitioning under Simpler Workloads
	5.3.1 The TPC-C Benchmark
	5.3.2 The Multi-tenant Workload with a Changing Hot Spot
	5.3.3 Impact of Initial Partitioning

	5.4 Dynamic Machine Provisioning
	5.5 More Experiments

	6 Related Work
	6.1 Data Fission
	6.2 Data Fusion
	6.3 Optimizations by Batching Transactions in Deterministic Database Systems

	7 Conclusion
	8 Acknowledgment
	References

